
	

Application of multi-omics in single cells

1

MedDocs Publishers

Received: Mar 05, 2018
Accepted: Apr 16, 2018
Published Online: Apr 23, 2018
Journal: Annals of Biotechnology
Publisher: MedDocs Publishers LLC
Online edition: http://meddocsonline.org/
Copyright: © Kang X et al (2018). This Article is distributed 
under the terms of Creative Commons Attribution 4.0 
international License

*Corresponding Author(s): George E Liu, 

Animal Genomics and Improvement Lab, BARC, NEA, 
USDA-ARS, USDA, Building 306, BARC-EAST, Beltsville, 
MD 20705, USA
Tel: 301-504-6936, Fax: 301-504-8414
Email: George.Liu@ARS.USDA.GOV 

Annals of Biotechnology

Open Access | Review Article

Xiaolong Kang1,2; Andrew Liu3; George E Liu1*
1Animal Genomics and Improvement Lab, USDA, USA
2Department of Agriculture, Ningxia University, China
3Centennial High School, Ellicott City, MD 21042, USA

Keywords: Single cell sequencing; Amplification; Genomics; 
Transcriptomics; Epigenomics; Metabolomics; Proteomics

Cite this article: Kang X, Liu A, Liu GE. Application of multi-omics in single cells. Ann Biotechnol. 2018; 2: 1007.

Abstract

In recent years, single cell assays have made exciting 
progresses, overcoming the issue of heterogeneity associ-
ated with bulk populations. The fast-developing sequencing 
methods now enable unbiased, high-throughput and high-
resolution view of the heterogeneity from individual cell 
within a population, in terms of its fate decisions, identity 
and function. The cell’s state is regulated at different lev-
els, such as DNA, RNA and protein, by complex interplay of 
intrinsic molecules existing in the organism and extrinsic 
stimuli such as local environment. Comprehensive profil-
ing of single cell requires a simultaneously dissection from 
different levels (multi-omics) to avoid incomplete informa-
tion generated from single cell. In this short review, we first 
examine the whole genome amplification methods, and 
then survey the features of the single cell approaches for 
genome, epigenome, transcriptome, proteome and me-
tabolome profiling. Finally, we briefly analyze advantages of 
multi-omics measurement from single cells as compared to 
separate measurement of each molecular type, and discuss 
opportunities and challenges of combining single cell multi-
omics information on resolving phenotype variants.

Abbreviations: WGA: Whole-Genome Amplification; DOP-PCR: 
Degenerate Oligonucleotide-Primed Polymerase Chain Reac-
tion; MDA: Multiple Displacement Amplification; MALBAC: Mul-
tiple Annealing and Looping-Based Amplification Cycle; LIANTI: 
Linear Amplification Via Transposon Insertion; SC: Single cell; 
CNV: Copy Number Variant; EMT: Epithelial-to-Mesenchymal 
Transition; CTCs: Circulating Tumor Cells

Introduction

The cell is the basic unit of life, whose phenotypes can vary in 
response to genotypes and environmental influences. Because 
the remarkable cell-to-cell heterogeneity exists in single cells, 
individual cells need to be characterized owing to their stochas-
tic changes or uniqueness [1, 2]. By detecting the behavior and 
heterogeneity of the individual cells, we could shed lights into 
the complex biological mechanisms underlying different pheno-
type variants, such as a developing embryo or a tumor.

To achieve these goals, accuracy, uniformity and coverage 
must be maximized when sampling a cell’s available molecules. 
This is a key challenge in the development of single-cell omics 
approaches for genome, epigenome, transcriptome, proteome 
and others. Additionally, sampling of one molecular type from 
individual cells does not provide complete information because 
of the complex interplay of molecules at different levels. There-
fore, single cell multi-omics will enable a more detailed and com-
prehensively exploration of cellular variations and behaviors.
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The first step of analyzing a single cell is to isolate and capture 
single cells from bulk populations. Numerous approaches have 
been developed: mouth pipetting, serial dilution, robotic micro-
manipulation, laser-capture-micro dissection, flow-assisted cell 
sorting, and micro fluidic platforms, etc [3]. The advantages and 
limitations of these methods have been reviewed before [4-6]. 
In this review, we first examine the whole genome amplification 
methods and survey each of omics approaches for single cells. 
We will then briefly discuss the prospects of combining single 
cell multi-omics information on resolving phenotype variants.

Whole genome amplification methods from single cells

Obtaining enough amount molecules, including DNA or RNA, 
from single cell is a great challenge. For example, for single cell 
sequencing, limited amount of DNA or cDNA molecules need to 
be amplified with higher fidelity and less bias. Several Whole-
Genome Amplification (WGA) methods have been used to ob-
tain sufficient DNA for sequencing (Table 1). Here we quickly 
summarize a few of these methods and their features.

DOP-PCR: 

The Degenerate Oligonucleotide-Primed Polymerase Chain 
Reaction (DOP-PCR), was widely used to amplify genome from 
single cell in earlier years [7]. DOP has important applications 
in genome mapping and can be used to identify the origin of 
markers, measure CNVs, and map translocation breakpoints on 
a large genomic scale [6,7,19]. Because of the exponential am-
plification nature of PCR, DOP-PCR has low genome coverage, 
high amplification biases [10], and high drop-out rate [19-21].

MDA: 

Multiple Displacement Amplification (MDA), is another com-
mon method of DNA amplification in single-cell whole-genome 
analyses. Using random primers and Phi29 DNA polymerase, 
circular DNA templates can be amplified 10,000-fold in a few 
hours [10]. Although offering much higher genome coverage 
than DOP-PCR, MDA gives rise to chimeric reads and introduces 
huge amplification bias because of its exponential amplification 
process [22,23]. Furthermore, such sequence-dependent bias 
of MDA is not reproducible along the genome from cell to cell.

MALBAC: 

By incorporating quasi-linear amplification through looping-
based amplicon protection into PCR, the Multiple Annealing And 
Looping-Based Amplification Cycle (MALBAC) method reduces 
the sequence-dependent bias introduced by exponential ampli-
fication [15]. The primers in the initial reaction of MALBAC are 
designed to share common sequences that form loops and in-
hibit the repeated (potentially biased) priming from their ends. 
MALBAC offers high uniformity across the genome. Sequencing 
DNA amplified with MALBAC can achieve 93% genome cover-
age ≥1x for a single human cell at 25x mean sequencing depth 
[16].

LIANTI: 

To further reduce amplification bias and errors, a new 
method, Linear Amplification via Transposon Insertion (LIANTI), 
which combines Tn5 transposition and T7 in vitro transcription 
for single-cell genomic analyses has been recently developed 
[17]. During LIANTI, Tn5 transposition first randomly fragments 
and inserts T7 promoter sequence into genomic DNA. T7 RNA 
polymerase is then used to generate amplified antisense RNA. 
After reverse transcription and second strand synthesis, double-

stranded LIANTI amplicons are ready for DNA library prepara-
tion and high throughput sequencing. Therefore, by replacing 
PCR with in vitro transcription, LIANTI effectively decreases 
PCR’s errors and biases induced by nonspecific priming and ex-
ponential amplification

The ‘omics’ application based on single cell

In the rest parts, we will survey the profiling methods for 
each molecule type and then briefly discuss the opportunities 
and challenges offered by measuring them simultaneously at 
cellular resolution.

Single cell genomics: 

Single cell genome sequencing was used to characterize mu-
tations, structural variations, aneuploidies, and recombination 
in the genome [14,24]. It has also been used to study the diver-
sity, evolution and role of genetic mosaicism [22,25]. Single cell 
genome sequencing is crucial for revealing genetic heteroge-
neity and cell-lineage relationships in normal and diseased tis-
sues [26-28]. As a precise evaluation of prognosis is important 
in creating an effective treatment strategy for cancers, single-
cell technology has allowed many new prognostic factors to be 
detected and confirmed. For example, it was applied to iden-
tify and trace the origin of disseminated tumor cells in breast 
cancer [29]. In prostate cancer, single cell sequencing analysis 
has been applied to show that loss of PTEN can predict poor 
prognosis [30]. Therefore, single-cell technology can provide 
prognosis more accurately than before [31].

Single cell transcriptomics: 

Temporal and spatial changes in gene transcription drive 
the development of organism. Single-cell RNA-seq (scRNA-seq) 
was first reported in 2009 for analyzing the mouse blastomere 
transcriptome at a single-cell resolution [1]. It can be used for 
determining gene regulatory networks at whole genome scale 
in an objective and unbiased way. When combined with over 
expression, knockout or knockdown of a gene of interest, scR-
NA-seq can reveal the gene expression network in target cells 
[1,32,33]. It also has the potential to provide transcriptomic in-
formation from intratumoral cells and to identify the subpopu-
lations within a tumor, and to detect putative cancer stem cells. 
scRNA-seq is regarded as a promising way to improve diagnosis 
and prognosis, and provide more precise target therapy [34,35]. 
Although the great potential in detecting heterogeneity be-
tween cells from same individual, limitations also exist in single 
cell transcriptome. For instance, spike-ins are needed as unique 
molecular identifiers to allow accurate normalization and quali-
ty control of the raw data [36]. Reverse transcriptase and subse-
quent polymerase-based amplification steps often have prone 
to introduce biases in representation in the data. In scRNA-seq, 
it is estimated that only 10–40% of the original mRNA mole-
cules from a cell are represented in the final sequencing library 
[37,38], suggesting that there is still a long way to improving the 
accuracy of amplification and mRNA library construction.

Single cell epigenetics: 

Epigenomic mechanisms are central to the regulation of gene 
expression and study of the epigenomes of single cells is essen-
tial to understanding cellular identity, cellular function and phe-
notypes that are not predictable by genotype alone. Epigenetic 
alterations as a marker for early diagnosis may also become 
new targets for cancer prevention and treatment [39,40]. For 
example, the Epithelial-to-Mesenchymal Transition (EMT) is a 



key mechanism enabling epithelial tumor cells to disseminate 
and metastasize. Pixberg et al. established an assay to simulta-
neously analyze promoter methylation of three EMT-associated 
genes (miR-200c/141, miR-200b/a/429 and CDH1) in single 
cells through a protocol of agarose embedded bisulfite treat-
ment [41]. Their results showed methylation at the promoter of 
microRNA-200 family was significantly higher in prostate circu-
lating tumor cells (CTCs). These data also revealed an epigenetic 
heterogeneity among CTCs and indicated tumor-specific active 
epigenetic regulation of EMT-associated genes during blood-
borne dissemination. In another study, Litzenburger et al. iden-
tified the cell surface marker CD24 as co-varying with chroma-
tin accessibility changes linked to transcription factor GATA in 
single cells by using single-cell chromatin accessibility and RNA-
seq data in K562 leukemic cells [42]. Their results showed that 
GATA/CD24hi cells have the capability to rapidly reconstitute 
the heterogeneity within the entire starting population, sug-
gesting that single-cell chromatin accessibility can guide pro-
spective characterization of cancer heterogeneity. Moreover, 
studies of genome-wide hydroxymethylation [43], chromatin 
conformation [44] and DNA adenine methyltransferase identi-
fication [45], also provide new insights on how the epigenomics 
has impact on the gene expression at a single-cell resolution, 
which will be helpful to detecting the phenotype variants or 
heterogeneity of cancer cell. Recently, scRRBS and SC-WGBS or 
scBS-seq (for DNA methylation), scChIP-seq (for transcription 
factor occupancy and histone codes), scDNAse-seq and scATAC-
seq (for chromatin state), scHIC (for chromosome conformation 
capture), and others are emerging to enable single cell epige-
nomics studies [46].

Single cell proteomics: 

A cell’s proteome ties genotype to phenotype by defining its 
response to the various internal and external stimuli. For ex-
ample, tumor suppressor protein p53 is crucial in many cancers. 
High resolution single-cell analyses revealed that the results of 
the bulk cell studies failed to uncover p53’s true dynamic re-
sponse [47]. Instead of decreased magnitude, individual cells 
display series of equal p53 pulses with fixed amplitude and 
duration, independent of the intensity of external stimuli. The 
misleading average results from the bulk cell studies are related 
to a reduced cell number and loss of synchronization between 
single cells at later times. Therefore, single-cell proteomics will 
provide fundamental and valuable understanding of genetic 
heterogeneity in their responses to drugs and other stimuli, es-
pecially in cancer clinic research [48]. Although most of single-
cell proteomics approaches are still limited to dozens of pro-
teins, they already demonstrated the feasibility of realizing a 
more detailed characterization of cellular phenotypes [49-51].

Single cell metabolomics: 

Metabolomics, when combined with genomics, transcriptom-
ics and proteomics, offers us a synthetic view to fully understand 
the functionality of each individual cell. Within a single cell, the 
transcripts derived from DNA are translated into proteins, which 
act as enzymes to catalyze intermediate products of metabo-
lism. Therefore, metabolites act as a connection between geno-
type and phenotype on single cell level, providing a logical view 
on single cell’s behavior. Single cell metabolomic method was 
applied to a single isolated CTC from a neuroblastoma patient’s 
blood for a comprehensive detection of the metabolite and lipid 
profiles [52]. The metabolic profile of the single CTC was acquired 
along with detection of vital molecules such as amino acids, 
catecholamine metabolites, which are specific to neuroblas-
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toma cancer and drugs from the patient’s treatment regimen. 
This indicated that single cell metabolomic could be useful for 
monitoring drug delivery concentration levels to targeted cells.

Multi-omics: 

Furthermore, because a cell’s state is determined by the 
complex interaction of different molecules from genome, epig-
enome, transcriptome, proteome and metabolome, new multi-
omics approaches for measuring different types of molecules 
simultaneously are also recently reported, including DR-seq, 
G&T-seq, scTrio-seq, scMT-seq, scNMT-seq, and many others 
(Table 2) [49,53-66]. Based on integrated measurement and co-
analysis, simultaneous profiling of distinct types of molecules 
at single cell level (DNA, RNA, and protein) will enable us com-
prehensive understanding of cellular function and phenotype 
variation. Several reviews are available on discussing the fea-
tures of single-cell multi-omics [46,53,55,58,67-69]. Consider-
ing the complexity of cell heterogeneity from the same individ-
ual, multi-omics approaches will enhance our power to detect 
the genotype–phenotype relationships comprehensively and 
unambiguously. Five complementary strategies for data inte-
gration from measuring two or more different molecules in the 
same cell have been proposed, including “combine”, “separate”, 
“split”, “convert”, and “predict” approaches [53]. Application of 
multi-omics in single cells will enable, amongst other things, the 
generation of mechanistic models relating (epi) genomic varia-
tion and transcript/protein expression dynamics, which in turn 
should allow a more detailed exploration of cellular behavior in 
health and disease [55]. For example, one recent study reported 
the scNMT-seq (single-cell nucleosome, methylation and tran-
scription sequencing) [59]. They investigated chromatin acces-
sibility, DNA methylation and transcriptome simultaneously by 
applying a GpC methyltransferase to label open chromatin fol-
lowed by bisulfite and RNA sequencing. Methylated cytosines 
in a GpC context demarcate accessible DNA (linker regions and 
nucleosome-free DNA), while methylation is read from conver-
sion events of cytosines in a CpG context. By profiling the mouse 
embryonic stem cell, they found novel links between all three 
molecular layers and revealed dynamics coupling between epig-
enomic layers during differentiation. However, one limitation of 
scNMT-seq is the need to filter out C-C-G and G-C-G positions 
from the raw data, which reduced the number of cytosines that 
can be assayed compared with scBS-seq by ~50%. Addition-
ally, these types of multi-omics studies are also suffering from 
certain challenges and limitations, for example, many of them 
are still low throughput with low genome coverage (e.g. scBS-
seq data cover less than ~40% of genome) and low mappability 
rates (~20-30%). Finally, raw data for each omic type must also 
be separately filtered, processed, mapped to account for low 
signal-to-noise ratio due to locus dropout, amplification bias, 
and technical variation.

Application of Third-Generation Sequencing (TGS) technol-
ogies:

 Compared to the second-generation short read sequencing 
platforms, the third-generation sequencing technologies, in-
cluding Pacific Biosciences (PacBio) Single Molecule Real Time 
(SMRT) sequencing and the Oxford Nanopore Technologies se-
quencing (ONT), can generate average read lengths over 10,000 
bp and some read length up to 1 Mb or more [70,71]. Using bulk 
cells, the major applications of third-generation technologies 
range from de novo sequencing, resequencing, to transcriptom-
ics, epigenetics, metagenomics, and others. For example, they 



have been used to produce highly accurate and contiguous ge-
nome assemblies, avoiding the coverage bias introduced by the 
whole genome amplification. They have also been applied to 
resequencing analyses, to create detailed maps of phased struc-
tural variants. TGS technologies have also been widely used to 
study transcriptomes (e.g. Iso-seq), recognizing thousands of 
novel isoforms and gene fusions that were not found using 
second-generation short read sequencing [72]. Finally, some of 
the technologies (like ONT) also allow for direct measurement 
of epigenetic modifications from single DNA, RNA or protein 
molecules, such as methylation of DNA using Nanopolish or Sig-
nalAlign [71]. Even though the current sequence quality of TGS 
needs additional improvement, their future potential applica-
tions will be exciting in single cell genomics, single cell transcrip-
tomics, single cell epigenetics, and even proteomics.

Conclusion

The application of single-cell omics has already provided 
great insight into our understandings of diverse biological pro-
cesses with broad implications for both basic and clinical re-
search that have previously been difficult to resolve from bulk 
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population cells. On the other hand, certain challenges remain 
in the procedure of single cell isolation, whole genome amplifi-
cation, library construction, sequencing, bioinformatics analysis, 
and data integration. For instance, depending on platforms or 
methods, single cell approaches suffer from low coverage, bias, 
errors, when compared to those for bulk cells. In conclusion, 
even with its challenges, we are confident that single cell multi-
omics will provide us new opportunities for future research. As 
multi-omics technologies become more widely accessible and 
improved, they will lead to the unprecedented full-dimension 
discoveries about single cells.
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Method DOP-PCR MDA MALBAC LIANTI

DNA yield (per 100 μl reaction) 1∼6 μg 80 μg 3 μg 20 ng

DNA product length (bp) 100∼1000 2000∼≥100 000 500∼1500 50∼500

Amplification bias range between loci 106 <6-fold 2-fold None

DNA polymerase Taq DNA polymerase
Phi29 DNA poly-
merase

Pyrophage 3173 T7 RNA polymerase

DNA polymerase error rate 3×10−4 <10−6 - -

Amplification method Exponential Exponential Quasi-linear Linear

Coverage ∼39% >84% 52%-72% 97%

False positive rate
(amplification error rate)

High
9.6×10−4

Low
<1.3×10−4

Intermediate
<3.8×10−4

Low
5.4×10−6

False-negative rate
(coverage and allelic dropout)

High Low Intermediate Low

Uniformity High Low Higher Highest

References [7-9] [10-13]  [14-16]  [17,18]

Tables

Table 1: Characteristics of commonly used whole genome amplification methods.
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Table 2:  Selected multi-omics studies in single cells.

Omics Cell type Method Measurement and description Reference

Genomics & 
Epigenetics

Mouse preimplantation 
embryos

scCOOL-seq

Genome, DNA methylome, Chromatin accessibility: 
The reprogramming of the chromatin state and DNA 
methylation, copy number variation and ploidy were 

detected simultaneously from the same preimplantation 
embryos cell

Guo et al., 2017 [54]

Genomics & 
Transcriptomics

Mouse embryos cells, 
human breast cancer 

cells; human
lymphoblastoid cells

G&T-seq

Genome, Transcriptome: Genomic DNA and full-length 
mRNA from single cells were separated (polyadenylated 
- poly(A) RNA is divided from its genomic DNA using a 

biotinylated oligo-dT primer in adaptation), then amplified 
in parallel and sequenced

Macaulay et al., 2015 
[56]

Mouse embryonic stem 
cell

DR-seq

Genome, Transcriptome: This method can be used to 
analyze genomic variation and transcriptome heterogeneity 

from the same cell without physical separation of the 
nucleic acids prior to amplification

Dey et al., 2015 [57]

Genomics, 
Epigenetics & 

Transcriptomics

Human hepatocellular 
carcinomas (cancer 

cells)
scTrio-seq

Genome, DNA methylome, Transcriptome: Detect genome 
(CNVs), epigenome (DNA methylome), and transcriptome 
information of the single cells simultaneously, which allow 
for distinction between subpopulations within the same 

single cancer cell

Hou et al. 2016 [58]

Transcriptomics &
Epigenetics

Mouse embryonic stem 
cells

scNMT-seq

DNA methylome, transcriptome, chromatin accessibility: 
Chromatin accessibility, DNA methylation and transcriptome 

profiling were investigated parallelly by applying a GpC 
methyltransferase to label open chromatin followed by 

bisulfite and RNA sequencing

Clark et al., 2018 [59]

Human brain cells
scDrop-seq & 

scTHS-seq

Transcriptome, Chromatin accessibility: Integration data 
generated from nuclear transcriptomic and DNA accessibil-
ity maps allow for the cell-type distinctions in human brain 

tissues

Lake et al., 2018 [60]

Mouse embryonic stem
cell

scM&T-seq

Transcriptome, DNA methylome: DNA methylome and 
transcriptome profile were investigated simultaneously by 

applying scBS-seq to genomic DNA purified according to the 
G&T-seq protocol

Angermueller et 
al.,2016 [61]

Human primordial 
germ cells

scRNA-seq & 
WGBS

Transcriptome, DNA methylome: Characterized the 
developmental-stage-specific features of global DNA 

methylation and transcriptome of human PGCs at single-cell 
and single-base resolutions

Guo et al., 2015 [62]

Transcriptomics
& Proteomics

Human glioblastoma 
cells

PEA & Gene 
Expression 

Assay

Trancriptome, Proteome: Large sets of both RNA and 
protein targets in single-cell lysates was surveyed 
simultaneously for cell functions and responses

Darmanis et al., 2016 
[49]

Mouse macrophage 
cells

Microfluidics & 
scRNA-seq

Trancriptome, Proteome: The genome-wide transcriptome 
can be acquired from the same cell with protein profile 

which detected by a splittable single-cell microchip 
intergrating high-density antibody array

Georg and Wang 2016 
[63]

Human peripheral 
blood mononuclear 

cells

Branched DNA 
assay

Trancriptome, Proteome: mRNA content is quantified 
with increased fluorescence signal detection and reduced 

background, as well as low hybridization temperatures, and 
leaving intact assayed cells

Soh et al., 2016 [64]

Proteomics & 
Metabolomics

Human glioblastoma 
cancer cells

Integrated 
SCBC chip 
(Single-cell 

barcode chip)

Proteome, Metabolome: Metabolic heterogeneity and 
interactions between metabolites and signaling proteins can 
be resolved readily and accurately by using SCBS chip which 

integrated with surface-competitive binding assays with 
fluorescence readouts and functional protein immunoassays

Xue et al., 2015 [65]

Human primary naive 
T cell

High-
resolution 
MS (mass 

spectrometry)

Proteome, Metabolome: Dynamic metabolome and 
proteome profiles of T cells were surveyed by using high-

resolution mass spectrometry
Geiger et al., 2016 [66]
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