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Interactions between protein and biomaterials

When the surface of an implanted biomaterial (synthetic 
or natural) comes into contact with a biological fluid, such as 
blood, a cascade of interdependent events takes place and sev�
eral signals are generated [1]. Protein adsorption onto the sur�
face is considered the most important factor in the interaction 
between the biological fluid and the biomaterial. Many factors 
affect the extent of protein adsorption, including electrostatic 
interactions, water-mediated hydrophobic and hydration forces 
(Figure 1) [2-5].

Nonspecific protein adsorption is a dynamic process that oc�
curs very quickly, typically only seconds after the fluid meets the 
surface of the material, which generates an adsorbed layer, [6] 
and triggers a cascade of biological events [7,8]. For in vivo im�
plants, this adsorbed layer activates an irrevocable host defense 
mechanism, which is known as the foreign body reaction, which 
finally results in the production of a fibrous a vascular capsule 
that isolates the material from its surroundings. This prevents 

further physical, chemical or physiological interaction with its 
surroundings [6]. In the case of in vivo implants, protein foul�
ing not only reduces the efficacy of devices, but also results in 
thrombosis and other negative side effects [9]. Negative effects 
of protein fouling also take place in in vitro applications, since 
the adsorbed layer may clog the pores or inhibit specific binding 
of molecules to these devices [10,11]. For example, nonspecific 
adsorption of proteins significantly reduces the sensitivity of in 
vitro diagnostic assays, especially in the case of immunological 
assays [12]. In addition, proteins in the adsorbed layer undergo 
a slow denaturation process (Figure 2), which typically induces 
immunological responses in vivo or leading to failure in terms of 
specific sensing [13].

The reduction of nonspecific protein adsorption plays a key 
role in improving the compatibility and efficiency of biomateri�
als. The primary approach used is through chemical modifica�
tion of the surface through polymer coatings (Figure 3). Such 
coating provide a ‘stealth’ effect, [14] which is attributed to the 
high level of hydration of the hydrophilic polymer backbones, 
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gel coatings on the surface of biosensors, and biomaterials 
such as contact lenses and porous membranes. The basic 
concepts and mechanisms for the design and performance 
of polymer and hydrogel coating layers are introduced in 
terms of both biosensors and biomaterials. Polymer-based 
protein-resistant approaches for various types of basic ma�
terials are then summarized and discussed.
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steric repulsion, and reduction of the surface energy of the 
biomaterial [6,15-17]. Among these factors, hydration forces 
have been suggested as the key �����������������������������in determining whether ������a sur�
face will promote or reduce protein adsorption [18]. Following 
this rule, various types of polymer coatings were designed as 
the protein-resistant layer to cover a ‘bioinert’ material. These 
coatings include polypeptides, [19] poly(ethylene glycol), [20] 
polyglycerol (PG), [21] polysaccharides, [22] polyoxazoline, [23] 
poly(propylene sulfoxide),��� �������������������������  ��������  [24]������������������������������   � poly(phosphoester),����������  � [14] �����poly�
vinylpyrrolidone ��������������������������������������������[25]���������������������������������������� and zwitterionic polymers such as phos�
phorylcholine and sulfobetaine or carboxybetaine polymers 
[26-28]. These coated surfaces resist non-specific binding of 
proteins, and are widely used in implants and devices in vivo 
such as catheters, prosthetic devices, contact lenses, drug deliv�
ery vehicles, as well as in immunoassays such as Enzyme-Linked 
Immunosorbent Assay (ELISA) and patterned cell culture ma�
terials for in vitro applications [12,29].

In summary, understanding and controlling protein adsorp�
tion on biomaterial surfaces is essential to preparing bioinert 
surfaces and improve the efficacy of biomaterials.

Protein-resistant coatings for in vivo and in vitro bio-
sensors

Biosensors are important tools for research in molecular bi�
ology, for medical diagnostics, environmental monitoring and 
food safety, allowing real-time observation and rapid detection 
of chemical and biological molecules and their interactions [30]. 
The success of a biosensor is based on sufficiently high and con�
trolled binding capacity of target biomolecules, and also the 
activity of the immobilized biomolecules should be stable. One 
of the main problems with sensors, is loss of sensitivity due to 
biofouling, namely due to adhesion of proteins and other bio�
logical materials on the surface of the sensor. Biofouling (and 
its negative effects) has been observed in both in vitro (non-in�
vasive) and in vivo (invasive) biosensors [31,32] and it is widely 
regarded as the main cause of sensor failure [33,34]. Potential 
interference can be caused by nonspecific adsorption of biomol�
ecules from the sample or the environment to the surface [35]. 
In vitro protein fouling studies have shown that biofouling on 
the membrane and the electrode would lead to decreased sen�
sor signal [33,36].

To mitigate these problems, the sensor surface should have 
a low-fouling tendency, which is generally provided by using 
the bioinert polymers mentioned above [26,28,37]. Several ap�
proaches have been used to develop coatings that both enable 
a high degree of resistance to nonspecific adsorption and assist 
the immobilization of recognition molecules [38-41]. The im�
mobilization of recognition molecules, which are often called 
bioreceptors, is usually done on carefully prepared low-fouling 
surfaces.

A common strategy used in biosensing is the addition of in�
ert proteins including Bovine Serum Albumin (BSA) and casein, 
which can reduce the fouling rates by minimizing any hydro�
phobic and/or electrostatic attractions between the complex 
surface and the functionalized surface [4,11,42]. However, 
blocking with BSA sometimes leads to a substantial reduction of 
activity of the immobilized biomolecules/bioreceptor and de�
creased biorecognition activity thereby resulting in false nega�
tive results [43,44]. Instead, polymer coatings with active sites 
for binding active biomolecules have been developed for the 
application of highly sensitive biosensors.

PEG based polymers are most commonly used in passiva�
tion of biosensor surfaces [45]. For example, a protein-resistant 
POEGMA brushes coated surface was functionalized with biotin 
and allowed further specific binding of streptavidin both on Sur�
face Plasmon Resonance (SPR) and Quartz Crystal Microbalance 
(QCM) biosensors (Figure 4) [46]. The resulting films showed 
enhanced signal-to-noise ratio (∼10-fold enhancement) for the 
biospecific binding of streptavidin compared to biotinylated 
SAM without Poly(methacrylic acid) oligomeric glycol esters 
(POEGMA), when fibrinogen and lysozyme were set as the in�
terfering species. A similar approach is to use the activated end 
group of POEGMA on the surface to bond functionalized protein 
with Diels–Alder “click” reaction [47].

As a potential replacement of Polyethylene Glycol (PEG) 
based polymers, zwitterionic ultra-low-fouling poly (carboxy�
betaine acrylamide) (pCBAA) brushes were successfully used in 
immobilizing bioreceptors (in this case antibodies) on an Surface 
Plasmon Resonance (SPR) sensor (Figure 5) [48,49]. This type 
of sensor was capable of detecting specific analytes in blood 
plasma without detectable signals of fouling molecules. Further 
studies from the same group used functionalized zwitterionic 
polymers to build up ω-dopamine-pCBAA grafted silicon reso�
nator, [50] SiO2-coated SPR sensor, [51] and catechol-pCBAA 
grafted gold SPR sensors [52,53].

Unlike the flat basic materials used in aforementioned 
equipment-based biosensors, some point-of-care biosensors 
are built up on inexpensive porous materials such as paper 
and nitrocellulose membranes. Development of these types 
of paper-based devices for diagnostics and biosensing has at�
tracted a great deal of interest as they provide portable, low-
cost, low-volume, disposable, and simple analytical devices for 
bioassays and environmental analysis [54]. Recently, bioactive 
paper or lab-on-paper devices have been developed as a practi�
cal platform for assays in many different areas such as diagnos�
tics, food and water testing, and military applications [55-57]. 
These paper-based sensing devices can be applied not only in 
point-of-care testing but also in field analysis. This technology is 
already having an impact in low-cost testing and is expected to 
be used globally and in particular in resource-limited settings, 
in the near future.

While there are several proof-of-concept studies showing 
the potential of paper-based analytical devices, the adsorp�
tion and non-specific binding of proteins on paper surface is a 
serious problem for regular paper surfaces which may largely 
influence the accuracy of sensors [58,59]. The passivation of 
porous materials remains challenging as compared to the flat 
surfaces. As a basic requirement for the design and prepara�
tion of paper-based biosensor, anti-fouling properties must 
be built into the surface [60]. For this purpose, they are usu�
ally provided by modification with aforementioned hydrophilic 
polymerssuch as PEG analogues or zwitterionic polymers. For 
example, poly(carboxybetaine) (PCB) coated cellulose paper 
could significantly reduce the adsorption of human fibrinogen 
as compared with that of the unmodified control, and achiev�
erapid and sensitive glucose detection from undiluted human 
serum and specific antigen detection via covalently immobilized 
antibodies (Figure 6) [61].

Protein-resistant coatings for contact lenses

Soft contact lenses made with hydrogels have been widely 
used for vision correction over more than 50 years [62]. These 
lenses always suffer from challenges related to the deposition of 



proteins from the tear fluid onto the lenses, such as lysozyme, 
human serum albumin and globulin, [63-67] and subsequent 
formation of a coating layer of protein on the surface will serve 
as a precursor for microbial colonization and will induce the 
formation of biofilms. Therefore, protein adsorption on contact 
lenses is����������������������������������������������������� correlated to microbial cell attachment and some se�
vere issues for the wearer [68-70]. In addition, a strong corre�
lation has been found between the deposited lysozyme from 
the tear film onto the lenses and discomfort experience by the 
wearer [71].

Synthetic polymers associated with low protein adsorption, 
including poly(ethylene glycol) (PEG) [72] and 2-Methacryloy�
loxyethyl Phosphorylcholine (MPC), [73,74] and polymers with 
hydration improvement effects, such as poly(vinyl alcohol) 
(PVA), [75,76] have been entrapped within the bulk of the lens 
and improved the comfort of long term wear. Due to the pro�
tein-resistance-promoting properties of hyaluronic acid (HA), 
[77-79] a natural polysaccharide present in the tear film, various 
methods have been reported to incorporate HA into the bulk of 
the lens. Cross linking is the most commonly used method to 
introduce HA into the bulk hydrogel network, with HA incor�
poration demonstrated directly with the main lens material(s) 
(e.g. via photopolymerization of methacrylated photocrosslink�
able HA with 2-hydroxyethyl methacrylate (HEMA) [80]), within 
a secondary interpenetrating network (e.g. polyethyleneimine 
crosslinked HA within an independently crosslinked HEMA net�
work [79]), or via physical entrapment of a higher molecular 
weight HA-based cluster or nanogel (e.g. conjugation of HA 
to polypropylenimine tetramine dendrimers that improve HA 
immobilization within the lens) [77,78,81,82]. All of these ap�
proaches lowered the lysozyme and/or human serum albumin 
adsorption as compared to the native gels and have great po�
tential to be developed into daily used contact lenses.

Protein-resistant hydrogel coatings on porous materials

As mentioned in the previous section, various types of hydro�
gels are protein repellent and the hydrogels coated on the cell 
culturing biointerfaces have great potential in reducing protein 
adsorption and controlling cell adhesion. Hydrogels have also 
been used in coating porous materials such as filtration mem�
branes and tissue engineering implants in order to reduce foul�
ing from the proteins and other components such as cells from 
the blood serum/plasma.

Membrane biofouling is a process that starts immediately 
upon contact of the surface with the fluid containing proteins, 
cells, particles and other components. They adhere to the sur�
faces in the pores of the membrane [83]. The most common 
method to improve membrane anti-fouling properties is by 
hydrophilic coating of the surfaces through physical adsorption, 
crosslinking, and sulfonation, or surface grafting through UV 
photo irradiation, plasma, high energy irradiation and “living”/
controlled polymerisation [84].

Anti-fouling hydrogel coating on porous solid substrates is 
a relative new technique in membrane surface modification. 
PEG-based hydrogel has been coated on polyamide nanofil�
tration membranes, and such modified membranes shows an 
improved fouling resistance compared to pristine membranes 
[85]. A bifunctional hydrogel-coated film exhibiting both pro�
tein fouling resistance and antimicrobial activities was prepared 
by the copolymerization of poly(ethylene glycol) diacrylate 
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(PEGDA) and a functional monomer containing ammonium salt 
(RNH3Cl) on Polysulfones (PSF) membranes [86]. A hydrophilic 
hyperbranched poly(amido amine) (PAMAM) was successfully 
bonded onto the active polyamide reverse osmosis-membrane 
by chemical coupling [87]. Membranes modified with aque�
ous PAMAM solution showed very low protein adsorption 
compared to unmodified samples or samples modified with 
methanolic PAMAM solution. A poly(vinyl alcohol) (PVA) based 
polymer was synthesized and subsequently applied to modify 
a poly(vinylidene fluoride) (PVDF) membrane to both enhance 
the hydrophilicity and provide fouling resistance.

Free standing films containing hydrogel coating are prepared 
by a combination process of polymerization and crosslinking. 
For example, a Polyhedral Oligomeric Silsesquioxane (POSS) de�
rivative containing UV-curable methacrylate groups (methacryl-
POSS) was used as a multifunctional cross-linker to form thin 
and durable hydrogel films with poly(ethylene glycol) methacry�
late (PEGMA) as a hydrophilic comonomer [88]. Free standing 
films prepared by crosslinking PEG matrix on ultra-fine cellulose 
nanofibers exhibited excellent anti-fouling properties, which 
were confirmed by short-term and long-term fouling tests using 
a BSA solution [89]. Another free-standing membrane was syn�
thesized through polymerization of acrylamide in the presence 
of sodium alginate using N,N’-methylene-bisacrylamide as the 
covalent crosslinker and CaCl2 as the ionic crosslinker, and ex�
hibited low fouling properties against yeast suspension and BSA 
solution [90]. Crosslinked PEGDA hydrogels as a free-standing 
ultrafiltration membrane film could absorb significant amounts 
of water, and t�����������������������������������������������  he results from static protein adhesion experi�
ments showed that more hydrophilic surfaces, obtained from 
higher prepolymerization water content or with longer PEGDA 
chains, generally exhibit less Bovine Serum Albumin (BSA) ac�
cumulation [91].

In addition, there are a few trials that used hydrogel coatings 
on tissue engineering implant materials to reduce the protein 
and cell fouling from the body fluid and tissue in vivo. Poly�
vinylpyrrolidone (PVP) hydrogel coating bonded to a Polyureth�
ane (PU) substrate improved the surface hemocompatibility of 
blood-contacting medical devices as shown by a reduced abrup�
tion of serum-derived fibrinogen and number of platelet aggre�
gates formed during the contact of the material with blood over 
a long period (35 days) [92]. In another approach, ECM hydrogel 
coated polypropylene mesh device was shown to decrease the 
long-term host tissue response to the device when compared to 
the uncoated mesh devices due to a decreased collagen depos�
ition at day 180 [93]. Table 1 summarised different coatings 
mentioned for the biomaterials.

Conclusion

Although there are many researches on protein-resistant 
coatings, all listed above are just part of them. Actually, we 
know that the key roles in affecting the adsorption of proteins 
are on the surface, including electrostatic interactions, the ex�
act role of water-mediated hydrophobicity and hydration, but 
the detailed mechanism is still not clear. Further notice would 
be focused on the competitive adsorption of proteins on the 
surface of the material, the conformational changes of the pro�
tein when it was adsorbed on the surface, the effects of these 
different coatings on the biocompatibility and the systematic 
study of the effect of the protein coating in vivo in the future.
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Tables

Polymer Basic Material Advantages ref

poly(phosphoester) polystyrene nanocarriers reduce non-specific cellular uptake 14

polypeptide
surface plasmon resonance (SPR) biosens�
ing

great retention of activity for the antibodies 19

PEG Au improve hydrophilicity 20

polyoxazoline niobia (Nb2O5) surfaces high antibacterial properties 23

poly(propylene sulfoxide) Au
hydrophilic repeating unit; well-solvated;
conformationally flexible oligomer

24

polyvinylpyrrolidone (PVP) polysulfone membranes high hydrophilicity 25

PEG nanoparticles (NPs) biodegradable 26

sulfobetaine poly(ether urethane) (SPEU) surface 
bind water molecules even more strongly via 
electrostatically induced hydration

27

sulfobetaine polyurethane (PU) more stable and easier to prepare 28

Poly (oligo ethylene glycol methacryl�
ate) POEGMA

surface plasmon resonance (SPR) and quartz 
crystal microbalance (QCM) biosensors

enhanced signal-to-noise ratio 45

poly(oligo ethylene glycol methacryl�
ate) POEGMA

Au excellent anti-pollution performance 47

poly(carboxybetaine acrylamide) 
(pCBAA)

plasmon resonance (SPR) sensor ultralow fouling background, 48

poly(carboxybetaine) (PCB) cellulose paper
excellent fouling resistance;
superhydrophilic properties

61

2-methacryloyloxyethyl phosphoryl�
choline (MPC)

silicone hydrogels high oxygen permeability 73

poly(vinyl alcohol) (PVA) nelfilcon A increasing the comfort 75

hyaluronic acid (HA) poly(2-hydroxyethyl methacrylate) (pHEMA) high hydrophilicity and transparency 77

hyaluronic acid (HA) hydrogel lens high water content, optical transparency 78

hyaluronic acid (HA) silicone hydrogel
improving hydrophilicity and decreasing lyso�
zyme sorption

79

ω-dopamine-pCBAA silicon resonator
ultra-low fouling functionalized surface coat�
ings

50

Poly (carboxybetaine methacrylate) 
(pCBMA) 

SiO2 substrates high sensitivity 51

poly(carboxybetaine) (pCB) gold SPR sensors high sensitivity and specificity detection 53

PEG-based hydrogel polyamide nanofiltration membranes improved fouling resistance 85

poly(ethylene glycol) diacrylate (PEG�
DA)

ammonium salt (RNH3Cl) on polysulfones 
(PSF) membranes.

High antibacterial activity 86

hyperbranched poly(amido amine) 
(PAMAM)

polyamide reverse osmosis membrane high salt rejection and low protein absorption 87

poly(ethylene glycol) methacrylate 
(PEGMA)

methacryl-POSS high water absorption and water permeability 88

PEG ultra-fine cellulose nanofibers excellent anti-fouling properties 89

N,N’-methylene-bisacrylamide sodium alginate hydrogel excellent anti-pollution performance 90

Polyvinylpyrrolidone (PVP) polyurethane (PU) substrate
improve the surface hemocompatibility of 
blood-contacting medical devices

92

Table 1: The advantages of different coatings for biomaterials.
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Figure 1: The advantages of different coatings for biomaterials. 
Figure reproduced from Ref [5]

Figures

Figure 2: Dynamic adsorption and denaturation of proteins on 
a bare surface. (Figure reproduced from Ref [8]). 

Figure 3: Protein resistance is imparted by polymer-coated 
surface. (Figure reproduced from Ref [8])

Figure 4: Schematic representation of the biotin conjugation 
reaction on POEGMA brushes on the sensor surface. (Figure re�
produced from Ref [46]).

Figure 5: ��������������������������������������������������  Schematic of the surface activation, protein immo�
bilization, and surface deactivation of a pCBAA coated surface. 
(Figure reproduced from Ref [48]).

Figure 6: The reaction scheme of grafting protein-resistant 
poly(carboxybetaine) (PCB) onto cellulose substrates. ����������� (Figure re�
produced from Ref [61]).
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