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Abstract

Historically, the Right Ventricle (RV) has been an under-
represented component of the growing body of literature 
regarding the circulatory system. Unfortunately, evidence 
has shown RV failure is closely associated with hospital 
admissions and increased short- and long-term mortality. 
RV failure can be categorized as acute or chronic, but the 
primary mechanisms underlying the development of its 
decompensation are diminished contractility, circulatory 
overload, and pressure overload. While medical manage-
ment of Right Heart Failure (RHF) has its role in hemody-
namic optimization, not all patients respond as expected. 
The role of mechanical circulatory support MCS continues 
to grow as more options become available. This review aims 
to present an overview of the physiology of the RV as it re-
lates to pulmonary circulation, the pathophysiology of right 
ventricular failure, distinctions between acute and chronic 
developments, medical management, and options available 
for mechanical circulatory support.
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The Right Ventricle and Pulmonary Physiology

The differences between the RV and left ventricle (LV) be-
gin at development. Progenitor cell populations known as heart 
fields will grow into their respective ventricle based on cel-
lular markers and Transcription Factors (TF) [1-3]. TF Islet-1 is 
expressed in cells that will develop into the future RV but not 
be expressed in future LV cells [1]. In utero, the RV has a simi-
lar wall thickness as the LV while being the dominant chamber. 
At birth, a dramatic decrease in Pulmonary Vascular Resistance 
(PVR) allows for the regression of wall thickness. Generally, the 
structure of the RV will be thin-walled, crescent-shaped, and 
have a mass of 1/6 that of the LV, despite supplying the lungs 
with 100% of our body’s cardiac output [1-3].

The fundamental role of the RV is to provide the lungs with 
deoxygenated blood for gas exchange. With our first breath, the 
pulmonary circulation instantly becomes a low-pressure circuit 
at rest and during exercise. This contrasts with systemic circula-
tion, where increased cardiac output during exercise is associat-
ed with a significant increase in blood pressure. The difference 
between the two circulations is based on the concept of recruit-
ment. As right ventricular cardiac output increases, vessel cir-
cuits are added in parallel to the existing capillary network, ob-
viating any rise in pulmonary arterial pressure [51]. The ability 
of the lung to selectively perfusion regions of the lung based on 
ventilation as well as body position is fundamental to the model 
proposed by Dr. West in 1964, in which he categorized the lung 
fields into Zones 1 through 3 based on the degree of blood flow 
and aeration of alveoli, pulmonary arterioles, and venules [52]. 
With this model in mind, we find that blood flow through the 
lungs depends on the relationship between the driving pres-
sure between the pulmonary arterial and venous systems and 
the trans mural pressure exerted on the pulmonary vessels by 
alveolar distention. Pulmonary vessels, unlike systemic vessels, 
have much higher compliance and act as compressible resis-
tors (i.e., Starling resistors). Therefore, inspiration-associated 
over-distention of alveoli will compress these small vessels and 
consequently increase RV afterload, thus impeding RV ejection 
during inspiration [53].

Two determinants of proper RV function are preload and af-
terload. Traditionally, echocardiography provides a non-invasive 
and accessible method of measuring RV function. However, a 
patient’s body habitus or unskilled user may diminish the exam 
quality. Fortunately, Right Heart Catheterization (RHC) is an in-
vasive method for measuring intracardiac pressures. Through 
this, we can measure Right Atrial Pressure (RAP), Pulmonary Ar-
tery Wedge Pressure (PAWP), and cardiac output (CO) [4]. The 
most straightforward approach to quantify RV dysfunction is 
measuring the ratio of RA to PAWP [5].

Right Heart Failure

Right Heart Failure (RHF) has had multiple proposed defini-
tions over the years, but none have gained formal acceptance. 
In 2008, the European Society of Cardiology defined RHF as “a 
common clinical manifestation of heart failure characterized 
by breathlessness, fatigue, evidence of RV dysfunction, raised 
jugular venous pressure, peripheral edema, hepatomegaly, and 
gut congestion.”7 By 2018, the American Heart Association pro-
posed RHF to be defined as “a clinical syndrome with signs and 
symptoms of heart failure resulting from abnormal RV structure 
or function, caused by the inability of the RV to support optimal 
circulation…”7 Despite the varying verbiage the core concept is 
that the RV is unable to fill or reject blood. Several factors con-

tribute to low cardiac output (CO) in the setting of RV failure, 
such as RV systolic dysfunction, tricuspid regurgitation, tachyar-
rhythmias, or poor preload [1-3,6,7].

The progression of RHF is dependent on the RV’s ability to 
adapt to injury or stress. The patient presentation can range 
from asymptomatic to refractory RHF [5,6]. Key factors such as 
the type/severity of the injury, chronicity, and age at the time 
of onset will determine RV adaptation [6-8]. Significant consid-
eration must also be paid to neurohormonal activation, gene 
expression, and pattern of ventricular remodeling for their roles 
in the progression of RHF. Excessive sympathetic adrenergic 
stimulation adversely affects ventricular remodelling [7,8]. El-
evated catecholamine levels associated with pulmonary artery 
hypertension increase pulmonary vascular resistance, thus low-
ering cardiac index [6-8].

LV systolic function directly correlates with the prevalence 
and severity of right ventricular disease (RVD) [7]. One study 
comparing 100 heart failure patients with both reduced and 
preserved ejection fraction, found a prevalence of 50% of RVD 
in preserved ejection, but 73% in reduced. Furthermore, RVD 
complicating heart failure with reduced ejection fracture is as-
sociated with a 2.4 increase in the risk of mortality compared 
to no RVD [7]. Ventricular interdependence plays a vital role in 
RHF, especially in the acute setting, as dilatation can cause a 
leftward shift of the interventricular septum and compromise 
the LV [1,3,7,8].

Acute Right Heart Failure

Acute Right Heart Failure (ARHF) results from impaired 
forward flow secondary to impaired function of the ventricle, 
valves, or conduits. Developing ARHF is associated with a mor-
tality ranging from 6% to 14%.1 The RV is thin-walled because 
the highly compliant, low-resistance pulmonary circuit allows 
forward flow with low peak systolic pressure. This has the add-
ed advantage of avoiding the need for isovolumic contraction 
and relaxation phases, as seen with the LV. Thus, the RV adapts 
better to volume overload than pressure overload or contractile 
dysfunction [1,7,8].

The most common cause of acute RV pressure overload is a 
pulmonary embolism (PE) [8]. The anatomic location as well as 
clot burden are closely related to the degree of RV failure and 
hemodynamic instability.1,8 The initial obstruction leads to an 
immediate increase in PVR but is exacerbated by hypoxic pul-
monary vasoconstriction, secondary to a ventilation-perfusion 
mismatch [1]. The RV can momentarily adapt to the pressure 
overload before RV dilatation causes a leftward septal shift and 
compromises LV filling. Echocardiographic evidence of RV dys-
function is present in 25% to 60% of patients with a PE [7,9]. 
Such findings are associated with poorer prognosis and mortal-
ity ranging from 2.4 to 3.5 times greater than those without RV 
dysfunction [9]. Patients who are hemodynamically stable on 
presentation have an expected mortality of 4%, while patients 
in cardiogenic shock have an expected mortality between 20% 
and 50% [8].

An acute Right Ventricle Myocardial Infarction (RVMI) is of-
ten the cause of ARHF in the setting of inferior Myocardial In-
farction (MI) [1,3-4,7,8]. Of all inferior acute ST-elevation myo-
cardial infarction, RV involvement occurs in 30% to 50% of cases 
[7,8]. The disruption of blood flow via the right coronary artery, 
results in ischemic damage to the myocardium of the RV-free 
wall and interventricular septum [1-5]. Impaired contractility 
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reduces the RV systolic function leading to poor RV stroke vol-
ume.1,8 Ultimately, the left heart can only pump what the right 
heart can deliver, thus hypotension is the most commonly seen 
consequence of RVMI [10].

Chronic Heart Failure

Chronic heart failure is often a consequence of progressive 
increases in RV afterload, as seen in Pulmonary Arterial Hyper-
tension (PAH) or mitral valve disease [1,2,6,8,11]. A hallmark 
adaptive change to the elevated filling pressure is myocyte 
hypertrophy. As the hypertrophy continues, the RV begins to 
undergo isovolumic phases of contraction and higher end-di-
astolic volume [1,11]. Eventually, RV adaptation will no longer 
overcome the increasing afterload leading to oxidative stress, 
inflammation, and impaired angiogenesis to the myocardium.1 
Ultimately, myocytes are replaced by fibrotic tissue further 
compromising the function of the RV [1,2,11].

Although less common, chronic volume overload, as seen 
in tricuspid regurgitation, pulmonic stenosis/regurgitation, or 
septal defects, will also lead to RV failure [1,2,7,8]. Generally, 
these patients develop chronic RHF as a sequela from Congeni-
tal Heart Disease (CHD). The more common associations are 
tetralogy of Fallot, pulmonary atresia, hypoplastic left heart 
syndrome, and transposition of the great arteries. Interestingly, 
with advances in pediatric surgical technique and medical care, 
CHD patients are living longer into adulthood predisposing 
them to the progression of RHF[1].

Medical Management

Medical management of RHF begins with identifying and 
treating any reversible causes. While management is tailored 
to its specific cause, the focus is the optimization of preload, af-
terload, and contractility [5,8,11]. Preload should be managed 
with volume expansion or diuretic therapy with an emphasis 
on avoiding venous congestion [5,11]. Because PAH significantly 
increases afterload, providing locally acting or systemic pulmo-
nary vasodilators will reduce pulmonary artery pressures and 
thus increase forward flow [4,5]. The significant hemodynamic 
changes associated with RHF can be improved with vasopres-
sors or inotropic agents. Unfortunately, some RHF is refractory 
to medical management, necessitating mechanical support.

Mechanical Circulatory Support

Although medical treatment can significantly improve a pa-
tient’s hemodynamics and symptomatology, treatment failure 
is always possible. Patients’ refractory to chemical agents may 
benefit from Mechanical Circulatory Support (MCS). MCS has 
multiple indications and functions, including but not limited to 
bridge to transplantation or recovery. Timing of implantation 
is critical as outcomes are unlikely to improve after the onset 
of multiorgan failure.5 When selecting appropriate candidates, 
several factors include age, comorbidities, the potential for re-
covery, and advanced heart failure therapies (i.e., heart trans-
plant) [12]. The primary role of RV support devices is to deliver 
blood from the Right Atrium (RA) to the Pulmonary Artery (PA) 
via cannulation in a continuous flow manner. This is achieved by 
a device’s Rotations Per Minute (RPM) and the RA-PA pressure 
gradient [5,13]. Because the pressure gradient is relatively low 
compared to the LV, the set RPM is the primary determinant of 
flow [5,13]. However, in patients with severe PAH, the pressure 
gradient between the RA and PA is significantly elevated, which 
may hinder flow requiring higher RPMs [13].

Balloon counter-pulsation pumps

Intra-Aortic Balloon Pumps (IABPs) are among the most used 
circulatory support device due to their established safety and 
efficacy [14]. It is designed to increase myocardial oxygen sup-
ply while decreasing myocardial oxygen demand [15]. How-
ever, IABPs are designed primarily as assistive devices for the 
LV – inserted through the femoral artery and into the thoracic 
aorta. IABPs inflate during diastole to increase diastolic aortic 
pressure, thereby increasing coronary perfusion pressure, and 
maximizing oxygen supply [14]. During systole, IABPs rapidly 
deflate creating a negative pressure which functions to offload 
the struggling LV and decrease myocardial oxygen demand [14]. 
Generally speaking, IABPs are not ideal solutions for a failing RV 
– they have only indirect effects on the right ventricle by reduc-
ing LV filling pressure and, in turn, reducing RV afterload. Clini-
cal data on the efficacy of IABPs in RV failure conflict. Whereas 
Krishnamoorthy et al. found that IABPs provided inadequate 
support for patients with biventricular failure, Boeken et al. and 
Arafa et al. showed that hemodynamics did indeed improve 
with IABP implantation in patients with primarily RV failure [16-
18].

Liakopoulos et al. also found that IABPs alone did not restore 
RV function [19]. However, by combing the mechanical support 
treatment with a phenylephrine infusion investigators were 
able to increase both CI and SvO2 levels and restored cardiac 
function [19]. Recent studies have shown that IABPs improve 
hemodynamics in patients with out-of-proportion RV dysfunc-
tion [20]. Additionally, prolonged IABP support may optimize RV 
function in patients with biventricular end-stage heart failure 
preparing for LVAD placement-such optimization is essential for 
reducing the risk of RVF following LVAD implantation [21]. Given 
conflicting data, further study is necessary to understand the 
possibility of IABPs as RVADs, however, its well-established use 
gives it the potential to be implemented widely.

Rotary Flow RVAD

Rotary flow RVADs were first developed in the early 1990s, 
where they were initially deemed more effective in treating RV 
failure than balloon counter-pulsation pumps. Modern RVADs 
function through rotary pumps that transfer the rotational ki-
netic energy into circulation.5 Rotary blood pumps have be-
come increasingly popular as efficiency and durability increased 
over the years. In addition to reducing or even eliminating ven-
tricular work, they effectively increase and provide systemic 
perfusion [22].

The two types of continuous-flow rotary pumps – axial 
and centrifugal – differ in how they facilitate blood flow. Axial 
pumps are analogous to an Archimedes screw. In this system, 
the propeller is housed within a chamber. As the propeller turns 
it physically draws blood into the inlet and pushes it through 
the outlet to overcome resistance and pressure; the direction 
of blood flow is parallel to the impeller’s central axis. Examples 
of axial pumps discussed in this section are the Impella RP and 
the Heart Ware MVAD. On the other hand, centrifugal pumps 
function through a bladed, spinning disk that captures fluid and 
throws it tangent to the blade tips; the direction of blood flow is 
perpendicular to the impeller’s central axis [22,23]. An example 
of a centrifugal pump includes the CentriMag. Compared to axi-
al pumps, centrifugal pumps have larger diameters, lower pump 
speeds, and higher hydraulic efficiency because they need not 
overcome suction resistance [22,23]. Due to these differences, 
different rotary flow pumps should be used for different patient 
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indications and may result in varying outcomes, even if hemo-
dynamic performance is similar [22].

Centrimag

The Levtronix Centrimag is a pump designed for temporary 
uni- or biventricular support after acute cardiogenic shock. With 
a maximum flow rate of 10 L/min, it can effectively support pa-
tients for up to 30 days [24]. The Centrimag is unique in that its 
motor has no bearings – it runs off a magnetically levitated spin-
ner, which eliminates the need for bearings, shafts, and seals on 
the pump. In fact, there are no moving parts except the levitat-
ing rotor. Due to minimal friction and heat generation affect-
ing blood flow, hemolysis and thrombosis rates are significantly 
reduced following implantation [24]. The streamlined design al-
lows easy use in centers not equipped with transplant programs 
or ventricular assist devices. Other benefits of the Centrimag 
include reliable device function and low rates of device-related 
complications [25].

As an RVAD, the Centrimag is positioned in the right atrial 
appendage, allowing outflow into the pulmonary artery. It pro-
vides complete right ventricular unloading and circulatory sup-
port after cardiogenic shock [25]. Though the Centrimag is an 
effective temporary device for RHF, overall outcomes based on 
survival and weaning rates have remained static over time [26]. 
This stagnancy is observed despite advances in care manage-
ment and technology, thereby revealing that further research 
into RHF management is necessary [26]. Of note and for an un-
known reason, female patients seem at higher risk of Centrimag 
weaning failure than male patients. Further study into hemo-
dynamic differences between genders is necessary to explain 
why [26].

VA-ECMO

Veno-Arterial Extracorporeal Membrane Oxygenation (VA-
ECMO) devices are percutaneously delivered to patients with 
RV failure. They contain a centrifugal pump that can pass blood 
at a rate of 8 L/min to decompress RV and provide complete 
hemodynamic support indirectly. VA-ECMO is unique because it 
has the ability to oxygenate blood and remove carbon dioxide 
through sweep gas flow [27,28]. VA-ECMO placement entails 
femoral artery and vein cannulation, after which a cannula is 
positioned either in the RA or SVC-RA junction to drain deoxy-
genated blood. The blood is passed through the device, oxygen-
ated, and returned to hemodynamics by reducing RV preload, 
decreasing trans-pulmonary flow, reducing LV end-diastolic vol-
ume and pressure, and improving systemic perfusion; allowing 
for hemodynamic stabilization [27]. These devices provide com-
plete, albeit temporary, support for patients with biventricular 
HF or cardiac arrest. They may be safely and quickly positioned 
in patients at bedside, making them reliable RVADs for emer-
gencies.

VA-ECMO have been shown to be more effective than con-
tinuous-flow external VADs in patients with severe primary graft 
dysfunction in heart transplants. Those treated with VA-ECMO 
required less support time and experienced lower rates of re-
nal failure and mortality [29]. However, a recent, large national 
cohort study of 940 LVAD patients requiring MCS for RVF found 
that patients treated with VA-ECMO had higher adjusted and 
unadjusted mortality, reoperation, and significant complication 
risks than those treated with traditional RVADs.30 Additionally, 
VA-ECMO have not achieved positive outcomes in isolated RV 
recovery; they should not be the primary choice for RV MCS.28 

These caveats encourage further critical evaluation of VA-ECMO 
efficacy.

While VA-ECMOs is effective, further study is necessary to 
determine how HF subtypes – such as dilated LV cavities or de-
pressed baseline LV ejections – affect outcomes [27]. To date, 
these variables as they relate to different levels of support have 
been studied computationally or in animal models; thus, more 
clinical data are needed to characterize these interdependent 
relationships accurately.

Impella RP

Similar to the TandemHeart, the Impella RP is also a mini-
mally invasive, percutaneous device that enables direct RV by-
pass [31]. Inserted through the femoral vein with fluoroscopic 
guidance, the pump is laid across the tricuspid and pulmonary 
valves. Recently, a new method was used to implant the Impella 
RP without fluoroscopic guidance successfully; the device may 
be inserted through the femoral vein under transesophageal 
echocardiography guidance, thereby eliminating the extra step 
of fluoroscopy [32]. After implantation, the Impella RP unloads 
the right ventricle by pumping blood from the IVC directly to 
the outflow of the pulmonary artery; its maximum is 4.0 L/min 
at 33,000 rpm [31]. Thus, it allows a prompt and significant re-
duction of RV preload and direct augmentation of pulmonary 
artery flow.

The Impella RP is effective in patients with RVF of different 
etiologies – those who developed RVF after LVAD implantation 
and after cardiac surgery have benefitted from the device [33]. 
Implantation results in immediate, consistent, and positive 
hemodynamic effects while it significantly increases CI while 
decreasing CVP [34]. Hemodynamics remain stable even after 
explantation, where functional recovery of RV was seen in 78% 
of patients [34]. Finally, the adverse effects of the Impella RP 
are minimal. While some patients treated with Impella RP ex-
perienced hemolysis and excessive bleeding, these issues had 
no direct association with the device itself. These patients had 
already undergone surgical procedures or LVAD implantations, 
which are established causes of hemolysis [33].

Percutaneous RVAD (Protek Duo)

The Protek Duo percutaneous RVAD is a dual-lumen cannula 
usually inserted through the right internal jugular or subclavian 
veins[36]. With the proximal lumen positioned at the RA and 
the distal lumen to the PA, direct RV decompression and bypass 
may be obtained [37]. The Protek Duo has been shown safe and 
effective in patients with different indications for RVAD support 
-post-cardiotomy, primary respiratory failure, and cardiogenic 
shock [37]. Data also suggest that the device may have better 
weaning and mortality profiles than do other surgically placed 
RVADs.

The Protek Duo can support patients with acute RVF and 
those with biventricular failure when working in conjunction 
with a percutaneous LVAD such as Tandem Heart [37]. In addi-
tion to restoring RV function in LVAD patients, it may be used 
in patients with RV primary graft dysfunction following a heart 
transplant [39,40]. One significant advantage of the Protek Duo 
is that it is inserted through the upper venous system, thereby 
allowing patient ambulation and full mobility not possible with 
devices requiring femoral access. Given the fully percutaneous 
access site, the Protek Duo may have the potential to signifi-
cantly decrease rates of bleeding, thromboembolism, and infec-
tion rates seen in other VADs [38].
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Tandem Heart

The Tandem Heart is a percutaneous centrifugal pump that 
may support patients in cardiogenic shock or during high-risk 
coronary interventions. Designed initially as a left atrial-femo-
ral artery bypass system, it may be reconfigured to act as an 
RVAD.42 TandemHeart utilizes a direct RV bypass system, often 
through bilateral femoral cannulation, or femoral and internal 
jugular vein canualtion. The inflow cannula may be positioned 
in the RA via the left femoral vein and the outflow cannula in 
the PA through the right femoral vein [43]. An alternative way 
to position the TandemHeart is through the right jugular vein; 
this approach has been used alongside the Protek Duo cannula 
and similarly this fully percutaneous, groin-free strategy is less 
invasive and allows patient ambulation.

In patients with cardiogenic shock, TandemHeart has been 
found to raise cardiac index by 20% and reduce Pulmonary 
Capillary Wedge Pressure (PCWP) by 18.5%; it improves hemo-
dynamic parameters even in patients with inadequate support 
from an IABP.44 In addition, TandemHeart has been effectively 
implemented in at least one patient with severe mitral regur-
gitation for hemodynamic stabilization prior to mitral valve re-
placement [45]. 

HeartWare MVAD

The Heartware Miniature Ventricular Assist Device (MVAD) is 
a continuous axial flow pump that is the smallest of its genera-
tion. It allows a maximum flow rate of 10 L/min and operates 
with a wide-blade rotor design that minimizes cellular trauma 
[46]. Designed to require minimal surgical access; it does not 
require outflow graft anastomosis during implantation [47].

Human clinical data on the MVAD are minimal. The device 
was implanted as an LVAD in the first patient in 2015, but that 
trial was suspended because of the MVAD’s high risk of pump 
thrombosis. Although, that patient, five years later, was found 
to have a stable clinical course with no technical malfunctions 
of the device.48 The MVAD is not yet commercially available 
today due to several challenges, primarily its size: the small size 
of the motor results in significant shear stress and rotor heat 
production during high RPM [48].

While human data are lacking, several studies have shown 
promising results in animal models. In porcine biventricular as-
sist models, the MVAD successfully replaced cardiopulmonary 
bypass and fully supported the right ventricle[47]. As an RVAD, 
the MVAD may be implanted into the right ventricle, and the 
outflow cannula directed into the PA. While the MVAD demon-
strates potential, further study is necessary to confirm its safety 
in humans. It will be at least a few years before it can be used 
clinically, especially in children [50].

Discussion

The correlation between RV failure and poor prognosis has 
become evident over recent years. While medical management 
is a reliable treatment option, percutaneous MCS devices are 
proving their reliability in stabilizing patients in cardiogenic 
shock. These devices serve as a bridging therapy to recovery or 
transplantation. As these devices become more commonplace, 
their role in acute and chronic heart failure management will ex-
pand. Technological advancements will also allow for a broader 
patient selection process. There is still much more work to be 
done before we can know the limits of these devices.
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