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Abstract

The plant hormone Abscisic Acid (ABA) has applications 
not only in agriculture, but also in human health. ABA is 
established as the key hormonal regulator of plant stress 
physiology, and it is also involved in plant growth and de-
velopment under normal conditions. This phytohormone 
is present in the human body from dietary sources as well 
as from endogenous production through the carotenoid 
biogenesis pathway. ABA in mammals has both autocrine 
and paracrine function, and targets cells of the innate im-
mune response, mesenchymal and hemopoietic stem cells 
and cells involved in the regulation of systemic glucose 
homeostasis, among others. Moreover, ABA increases glu-
cose uptake in skeletal muscle and adipose tissue through 
an insulin-independent mechanism. Besides, ABA increases 
the energy expenditure in the brown and white adipose tis-
sues. In this article, we review the potential of ABA to treat 
or ameliorate brain and spinal cord disorders, such as sleep 
disorders, depression, pain and Alzheimer derived memory 
impairments. Dietary ABA administration shows benefits 
in humans, as well as extensive data obtained in different 
mammal models and cell lines. Finally, future perspectives 
in nutraceutical use of ABA are discussed.Keywords: Plant hormone; Abscisic acid; ABA receptors; 

Human health; Sleep disorders; Depression treatment; 
Memory improvement; Pain relief.

Introduction

Plants are central to our well‐being, principally as food and 
medicine source. The coevolution between plants and humans 
is complex but long standing. Hominids have achieved differ-
ent morphological and biochemical adaptations to plant ma-
terial ingestion [1]. An interesting connection between plants 
and humans came from small signaling molecules called phyto-
hormones [2]. Recent studies suggest that plant hormones also 

work in mammalian systems, and have the potential to reduce 
human diseases such as cancer and diabetes [3]. In particular, 
we want to focus this review in the relationship between the 
phytohormone Abscisic Acid (ABA) and mammalian physiology 
at the central nervous system level. Extensive data obtained 
from people and different animal models and cell lines suggests 
a myriad of benefits of ABA in human health. 
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Abscisic acid machinery in plants

The phytohormone Abscisic Acid (ABA) is a key player in the 
plant stress response. The most studied role of ABA has been 
the induction of drought resistance, among other biotic and 
abiotic stresses, in both model plants and crops [4,5]. ABA also 
plays a role in different physiological processes, such as seed 
germination and early seedling growth, shoot and root growth 
and development, stomata closure, senescence, fruit ripening, 
fruit and leaf abscission, and bud dormancy [6].

In plants, abiotic stress (e.g., drought or salinity) induces ABA 
synthesis and active hormonal level increases notably. ABA syn-
thesis in plants starts from the precursor carotene and follows 
the carotenoid pathway [7,8]. The initial steps, from carotene 
to xanthoxin are rendered in plastids and different enzymes are 
involved, for instance in Arabidopsis thaliana: viviparous (VPs), 
zeaxanthin epoxidase (ZEP/ABA1), abscisic acid (ABA)-deficient 
4 (ABA4) and nine-cis-epoxycarotenoid dioxygenase (NCEDs). 
Then in the cytosol, ABA2 and ABA3 turn xanthoxin into active 
ABA. The rate-limiting step for ABA synthesis is the cleavage of 
9-cis-epoxycarotenoid into xanthoxin by the NCEDs enzymes 
[9]. Moreover, transgenic plants with constitutive expression of 
NCEDs have high levels of ABA [10].

Net active ABA levels are set by the rate of synthesis and 
degradation/inactivation. In turn, ABA catabolism follows two 
different pathways: reversible conjugation or irreversible hy-
droxylation [7,11]. For instance, in Arabidopsis thaliana ABA can 
be glycosylated/inactivated by UGT71C5 to form ABA-glucose 
ester (ABA-GE), which is stored in vacuoles or in the endoplas-
mic reticulum. ABA-GE can be deconjugated to restore the ac-
tive ABA by glycosidases, such as BG1 and BG2 [12-14]. This 
mechanism allows plants to promptly adapt to changes in the 
environment through ABA-mediated responses. By contrast, 
ABA can be irreversible converted to an inactive form as dihy-
drophaseic acid (DPA) by CYP707As and ABH2 [15,16].

In plants ABA is perceived inside the cell through the fam-
ily of soluble receptors pyrabactin resistance 1 (PYR1)/PYR1-like 
(PYL)/regulatory components of ABA receptors (RCAR) [17-19] 
(Figure 1a). The PYL family has several members and has been 
identified in many crops, for instance 12 PYLs in palm [20], 14 
PYLs in tomato [21], 20 PYLs in quinoa [22], 23 PYLs in ben-
thamiana [23], 38 PYLs in wheat [24] and 46 PYLs in canola [25]. 
Upon ABA perception, the clade A protein phosphatases type 
2Cs (PP2Cs) are inhibited through the formation of a ternary 
complex: ABA-PYL-PP2CA. This PP2CA inactivation relieves the 

Table 1: ABA perception and its role in the central nervous sys-
tem. A) ABA is perceived by the PYR/PYL receptors in plants and by 
the LANCL receptors in mammals. B) In the central nervous system 
ABA plays a role in sleep, depression, memory and pain. In green: 
hypothalamus. In blue: hippocampus. In red: spinal cord. Icons 
were obtained from Biorender.

inhibition of the ABA-activated subclass III SNF1-related protein 
kinases 2 (SnRK2s) [26,27]. Then, activated SnRK2 induces the 
activation of a battery of ABA effectors from transmembrane 
channels to transcription factors [28,29] (Figure 1a). In a sec-
ond layer of regulation, the activity and half-life of components 
of this ABA core signaling pathway are regulated by different 
mechanisms such as the ubiquitin- 26S proteasome system, the 
endocytic/vacuolar degradation pathway, the circadian system 
and multiple secondary kinases [30-33].

ABA Signaling in Mammals

One of the first reports describing the presence of ABA in 
mammals found the phytohormone in the central nervous sys-
tem of pigs and rats [34]. The molecule purified from mamma-
lian brain had the same biochemical properties than abscisic 
acid. Moreover, this brain factor inhibited stomatal apertures in 
Setcreasea pallida Rose (Commelinaceae) leaves. Later on, the 
endogenous synthesis of ABA by human granulocytes was also 
demonstrated [35]. Moreover, an increase of intracellular ABA 
levels after heat-stress (fever-like temperatures), and its release 
triggered by phagocytosis was also reported. For this reason 
ABA was proposed as a new endogenous pro-inflammatory cy-
tokine in humans [35]. This idea of a phytohormone with a role 
in inflammation represents the first example of signaling mod-
ule conservation, including the stress signal molecule and its 
transduction pathway, from plants to mammals. Moreover, this 
concept is also important from a clinical perspective, given that 
the identification of a new inflammation cytokine would mag-
nify the possibility of development of new anti-inflammatory 
drugs (e.g. ABA antagonists molecules). Several other  obser-
vations support the conclusion that ABA is endogenously pro-
duced by human and murine cells: granulocytes [35,36], mac-
rophages and monocytes [37,38], insulin-releasing cells [39], 
mesenchymal stem cells (MSCs) [40], hemopoietic progenitors 
(HP) [41], adipocytes [42], keratinocytes [36], and fibroblasts 
[43], all have been shown to produce and release ABA when 
exposed to cell-specific stimuli.

Regarding ABA recognition in mammals, it was firstly report-
ed that lanthionine synthetase C-like protein 2 (LANCL2) binds 
ABA and regulates cell glucose uptake and metabolism [44,45] 
(figure 1a). Later it was also shown that LANCL1 binds ABA, in-
ducing the transcriptional expression of the glucose transport-
ers GLUT4 and GLUT1 and the signaling proteins AMPK/PGC-
1a/Sirt1, and also stimulates mitochondrial respiration and the 
expression of the skeletal muscle uncoupling proteins sarcolipin 
and UCP3 [46]. LANCL protein family, which includes LANCL1, 
2 and 3, shares properties typical of a peptide and steroid hor-
mone receptors. Both LANCL1 and LANCL2 bind ABA, although 
LANCL2 with higher affinity than LANCL1, with a Kd of 3 nM and 
1 µM, respectively [46,47]. Of note, none of the mammalian 
LANCL proteins are involved in lanthionine synthesis, even if the 
name includes “lanthionine synthetase” [48]. LANCL2 binds to 
the intracellular side of the plasma membrane through a my-
ristoyl anchor [49], while LANCL1 and 3 are cytosolic soluble 
proteins [50]. On the other hand, LANCL1 and 2 are highly ex-
pressed in mammals, particularly in the brain, heart and germi-
nal cells, with LANCL3 having the lowest expression levels of the 
LANCL proteins [46]. 

Upon ABA reception, LANCLs activates a G protein; in addi-
tion, as other steroid hormone receptors, they are capable of nu-
clear translocation after detachment from the membrane when 
de-myristoylated [46]. As proposed recently, this combination 
of peptide receptors (G protein coupling) and steroid hormone 
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receptors (with nuclear translocation), points to a heritage of 
the primordial origin of the hormone, or a consequence of ABA 
solubility properties [46]. In muscle cells, ABA recognition by 
LANCLs receptors lead to an insulin-independent glucose trans-
port activation via the AMPK/PGC-1a pathway [51,52]. It was 
also reported that LANCL2 mediates akt activation via mTORC2 
in human liver cells [53]. Besides, LANCL2 interacts with PPARɣ 
in white adipocytes, leading to PPARɣ-mediated activation of 
adipogenic genes after insulin-stimulated triglyceride accumu-
lation [54]. In fact, LANCL2-_/-_ mice show a reduction in mus-
cle activation and adipocyte glucose transport and metabolism, 
with the concomitant limitation in glucose tolerance [54]. Addi-
tionally, LANCL2 is also involved in the transcriptional activation 
of different browning genes in brown adipocytes [55]. The ABA 
signaling pathway in mammals also includes the cAMP-depen-
dent activation of PKA and CD38 phosphorylation, leading to a 
cyclic ADP-ribose (cADPR)-mediated intracellular Ca2+ increase 
[35,38,39,56]. 

ABA Role in Brain Health

ABA in sleep disorders

Sleep disorders increase health problems such as anxiety 
or forgetfulness [58,59]. Different therapies have been imple-
mented to ameliorate insomnia, using GABA, melatonin and 
orexin receptors as pharmacological targets [60]. However, the 
drugs administered can cause dependency and other serious 
side effects [61,62]. An interesting alternative is the application 
of natural compounds such as ABA (Figure 1b). 

It is well established that GABAergic neurotransmission has 
fundamental roles in boosting pentobarbital-induced sleep and 
relieving insomnia [63]. Indeed, ABA is involved in neurotrans-
mitter release and regulates the activation of second messen-
gers in both neural and non-neural cells [64-66]. On the other 
hand, the mammalian ABA receptor LANCL2 is related to plas-
ma membrane and peroxisome proliferator activated receptors 
(PPARs) , which are members of a nuclear hormone receptor 
superfamily with three subtypes (PPARα, PPARβ and PPARβ/δ) 
[44,67]. PPARs are located in different parts of the CNS, particu-
larly in hypothalamic neurons [68] which are involved in sleep/
wake regulation [64]. Clinical and behavioral investigations have 
shown that PPARs have significant effects in sleep-wake cycle 
regulation [69]. Besides, it has been demonstrated that circa-
dian locomotor activity is also affected by PPARs [70]. Sleep 
physiology and the circadian network are connected [71,72] 
and ABA-LANCL2-PPARγ axis could be one of the links. 

The efficacy of ABA to boost pentobarbital-induced sleep, 
and the involvement of GABA-A, PPARβ and PPARγ receptors in 
this process was recently demonstrated [73]. An ABA-induced 
promotion of sleep onset in rats was reported, with levels com-
parable to diazepam treatment [73]. On the other hand, it was 
reported that vitamin A plays a role in sleep cycle regulation and 
also has functional effects on the pineal gland [74,75]. ABA is a 
vitamin A-like lipophilic substance and has beneficial regulatory 
effects on brain physiology [76], with the potential to induce 
pro-hypnotic effects. Several reports show the ability of ABA to 
perform as a neuromodulator in the central nervous system, di-
rectly or indirectly interfering with synaptic neurotransmission 
due to changes in ion currents [65,66]. For instance, ABA in-
teracts with neurotransmitters and second messengers such as 
glutamate, calcium and nitric oxide at synaptic levels [35,66,77]. 
The ABA hypnotic effect is probably induced by neurotransmit-
ter regulation. However, this issue needs to be further inves-

tigated, and, above all, experiments in humans would be very 
welcome.

ABA as an antidepressant

Following with the role of ABA in the central nervous system, 
some antidepressant effects of this phytohormone were also 
proposed [78,79] (Figure 1b). ABA is produced and released 
by the brain itself. Indeed, the brain contains much more ABA 
than any other type of tissue [34]; although with asymmetric 
distribution, and the hypothalamus showed the highest ABA 
concentration. Depression is a stress-related disorder and af-
fects more than 10% of the world population [80,81]. The stress 
response in mammals is mainly regulated by the hypothalamus 
and a dysfunction in the hypothalamic-pituitary-adrenal (HPA) 
axis is usually involved in depression symptoms [82,83]. The 
ABA abundance in the hypothalamus suggests a role of ABA in 
the stress and depression response. 

An association between retinoic acid (RA) and depres-
sive symptoms has also been reported [84,85]. For instance, 
RA chronic administration induces HPA axis hyperactivity and 
depression-like behavioral changes in rats [86]. In addition, 
depressed patients exhibit a dysregulation in brain retinoid 
[87,88]. Interestingly, ABA and RA are carotenoid derivatives 
[7,89], and both molecules share a similar structure, specially 
a key carboxyl group in the isoprene-composed side chain in-
volved in their bioactivity [84,90].

The corticotrophin-Releasing Hormone (CRH) in the paraven-
tricular nucleus of the hypothalamus plays a central role in the 
regulation of HPA axis activity [82,83]. The release of corticoste-
rone and stimulus-induced c-fos expression are widely used as 
markers in studies of neuronal activation after stress [91,92]. In-
terestingly, the ABA concentration significantly increased in the 
serum after stress treatments, and correlates with elevated cor-
ticosterone and c-fos levels [78]. By contrast, a decrease in ABA 
concentration was found in the hypothalamus of the rats under 
acute stress. These results are suggesting ABA may play a role 
in the stress response. Indeed, chronic ABA administration in 
rats showed a downregulation in CRH mRNA expression in the 
hypothalamus. Moreover, lower corticosterone concentrations 
in the serum were found after ABA treatment. These results in-
dicate that ABA inhibits the HPA axis activity under physiological 
conditions. 

On the other hand, chronic ABA treatment induces sucrose 
intake in rats. Sucrose intake correlates with the motivation to 
seek out a pleasurable experience, and this is connected with 
the capacity to feel interest or pleasure in mammals [93]. The 
ABA- induced higher sucrose intake and the downregulated HPA 
axis activity suggest that this phytohormone may play a role in 
the pathogenesis of depression. Indeed, the antidepressant ef-
fect of ABA was recently demonstrated in rats and mice under 
Chronic Unpredictable Mild Stress (CUMS) and Forced Swim-
ming Test (FST) [78,79]. CUMS successfully decreased sucrose 
intake and increased immobility in the FST in rats, while ABA 
improved these depression-like behaviors [78]. Anhedonia 
is another behavior related with depression symptoms and 
sucrose intake [93,94]. ABA-treated rats spent a longer time 
swimming in the FST compared with the CUMS rats, although 
this accordance could not alleviate anxiety-related behaviors 
[78]. In agreement, ABA induces the normalization of CRH ex-
pression in the hypothalamus to control levels, and decreases 
corticosterone levels in serum. These results demonstrate the 
anti-depressant activity of ABA at the central nervous system, 
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and underscore the potential of this phytohormone for novel 
therapeutic strategies development to treat depression.

ABA improves memory in mammals

An interesting ABA function described in mammals is the 
positive effect that this phytohormone plays on spatial learn-
ing and memory performance [64,66] (Figure 1b). Indeed, this 
role of ABA is also involved in the amelioration of cognitive im-
pairment in diseases such as obesity induced type 2 diabetes 
[95,96], Alzheimer disease [97-99] and essential tremor [100]. 
ABA not only readily permeates the brain when applied periph-
erally [64], but is also produced and released by the brain itself 
[34,56]. Moreover, the high ABA levels seen in the hippocampus 
suggest a connection between this phytohormone and learn-
ing/memory processes. This is also supported by the fact that 
ABA and Retinoic Acid (RA) share similar molecular structures, 
and RA has been reported to improve spatial memory in rodents 
[101-103]. Indeed, ABA has a positive effect on spatial learn-
ing and memory performance [66]. Furthermore, the PI3K/PKC 
signaling pathway is involved in this mechanism given that its 
inhibitors suppress the ABA-induced learning and memory im-
provement [66]. The serine/threonine kinase PKC also partici-
pates in memory related disorders such as Alzheimer’s disease 
[104]. 

Alzheimer’s disease is a type of dementia related to neuro-
degenerative processes in the elderly,; and neuroinflammation 
is one of the most important pathological causes [105,106]. 
ABA treatment improves memory impairment in Alzheimer’s 
disease 5xFAD model mice, through neuroinflammation inhibi-
tion and LANCL2/CREB upregulation in the cortex and hippo-
campus [97]. Furthermore, this role of the phytohormone was 
also observed in the triple transgenic mice (3xTg-AD), another 
murine model of Alzheimer’s disease [99]. Even more, ABA also 
ameliorates cognitive impairments in a streptozotocin-induced 
rat model of Alzheimer's disease [98]. Streptozotocin central in-
jection produces neuroinflammation and oxidative stress in the 
brain, leading to learning and memory impairments [107], and 
ABA administration attenuates these deficits through activation 
of PPARβ/δ and PKA signaling [98]. These results together il-
lustrate that ABA is an effective treatment to improve cognitive 
health.

Role of ABA in pain treatment

It was recently demonstrated that ABA elicits antinocicep-
tive effects and reduces neuropathic pain at spinal cord level 
[108-110] (Figure 1b). The spinal cord plays a key role in pain 
transmission, regulation and processing. In particular, the dor-
sal horn parts and laminas have a paramount importance in 
pain control and transmission [111]. Injury and dysfunctional- 
related neuropathic pain treatment in the nervous system rep-
resents a current clinical challenge given the relative lack of po-
tent and safe analgesics [112]. Neuropathic pain originates from 
an aberrant neuronal activity along the pain signaling pathway, 
and neurons in the spinal dorsal horn are involved in this pro-
cess [113,114]. Furthermore, neuroinflammation in the spinal 
dorsal horn is a prerequisite for a dysfunction of spinal neuro-
nal activation and the genesis of neuropathic pain [115-117]. 
Moreover, neuroinflammation involves leukocytes infiltration, 
microglia and astrocytes activation, and pro-inflammatory cy-
tokines over-production [115-116]. As already stated, identify-
ing signaling molecules controlling neuroinflammation would 
provide novel molecular targets for the development of novel 
analgesics [108].

The presence of ABA in the spinal dorsal horn was recently 
reported [108] ABA concentrations in this tissue are not signifi-
cantly altered by peripheral nerve injury- induced neuroinflam-
mation. Moreover, ABA treatment ameliorates spinal inflamma-
tion and chronic pain in rats [108]. On the other hand, it was 
shown that the mammalian ABA receptor LANCL2 is expressed 
in immune cells such as T cells, macrophages, dendritic cells 
and spinal microglia [61,108]. Furthermore, knockdown of the 
LANCL2 gene with siRNA in the spinal dorsal horn recapitulates 
the nerve injury induced spinal neuroinflammation and noci-
ceptive behaviors [108]. In addition, spinal microglia cells re-
spond to ABA treatment [56]. Indeed, the abundance of LANCL2 
was reduced in the spinal cord with nerve injury- induced neu-
roinflammation, and this reduction was reverted by ABA treat-
ment [108]. Moreover, ABA treatment prevented the reduction 
in LANCL2 protein expression in the cortex of an Alzheimer’s 
disease mouse model [97].

The role of the ABA and LANCL2 signaling on mammalian 
inflammatory signaling pathways is controversial, given that 
both pro-inflammatory and anti-inflammatory effects of this 
axis have been reported [35,36,95,97,109,118]. Possibly, the 
ABA/LANCL2 function on inflammation is tissue/organ-specific. 
For instance, pro-inflammatory activity was reported in ABA 
treated granulocytes that showed an increment in phagocyto-
sis, production of reactive oxygen species (ROS) and nitric ox-
ide (NO) [35]. In accordance, an increment of TNFα, NO, and 
ROS dependent of ultraviolet light induced ABA release from 
granulocytes and keratinocytes has been demonstrated [36]. 
On the contrary, an anti-inflammatory ABA activity was induced 
in animals with inflammatory bowel disease, since this treat-
ment reduces TNFα expression and macrophage infiltration in 
white adipose tissue [118]. Besides, an ABA- induced reduction 
of glial activation and production of TNFα and IL-1β was report-
ed, leading to an improvement of cognitive function in the brain 
of a murine model of Alzheimer’s disease [97]. In this sense, 
ABA treatment also reduces high fat diet- induced microglial ac-
tivation and TNFα production in the hypothalamus of rats [95]. 
Moreover, ABA treatment attenuates spinal neuroinflammation 
induced by nerve injury in the spinal cord, and reduces Iba1 and 
TNFα expression [108]. An explanation proposed elsewhere, is 
that two different signaling pathways may be working for the 
opposite inflammatory ABA induced responses [119]. Support-
ing this idea, it was shown that ABA- induced pro-inflammato-
ry responses in granulocytes is mediated by a pertussis toxin 
(PTX)-sensitive G-protein [35]. In contrast, ABA- induced anti-in-
flammatory activity is not affected by PTX, given that ABA treat-
ment still attenuated lipopolysaccharide- induced microglial ac-
tivation and TNFα production in the spinal cord, suggesting that 
G-protein is dispensable in this scenario [108]. 

In another line of evidence, intrathecal ABA administration 
in rats lead to analgesia in tail-flick and hot-plate tests [110]. 
Furthermore, intracerebroventricular ABA application showed 
a potent pain-relieving activity in rats under formalin tests 
[109]. The molecular mechanism of these phenotypes is PKA-
dependent and involves p-ERK down-regulation, as well as the 
peroxisome proliferator-activated receptors (PPAR β/δ) and opi-
oid signaling activation [109-110]. Interestingly, opioids induce 
antinociception via PTX- sensitive inhibitory G-proteins [120]. 
Of note, ABA is structurally similar to the PPARγ agonist thiazoli-
dinediones and both compounds ameliorate insulin resistance 
and inhibit systemic inflammation [67,121]. Besides, PPAR re-
ceptors are members of the nuclear receptor superfamily [122].
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ABA plays a critical role in the genesis of neuropathic pain 
and showed antinociceptive effects [108-110]. The fact that de-
ficiencies in ABA reception and signaling in mammals can be 
remedied by exogenous ABA application provides a rationale to 
explore neuropathic pain treatments with this phytohormone. 
Moreover, given that ABA is present in a vegetable and fruit-
based diet, it is also conceivable to explore the nutraceutical 
application of ABA in the neuropathic pain field.

Conclusion and future perspectives 

There is substantial evidence to argue that ABA plays a 
neurotrophic role in the mammalian central nervous system, 
related with sleep, depression, pain and memory (figure 1b). 
While these evidences are mostly based on animal models and 
cell lines, further insight into ABA functions in the human brain 
would be necessary in order to determine its potential thera-
peutic effect. 

Despite the fact that ABA is produced and released by the 
brain itself [34], it is also conceivable to study the nutraceuti-
cal application of this phytohormone given that it readily per-
meates the blood brain barrier [64]. A fruit and vegetable rich 
food diet represents a natural source of ABA [123]. In particular 
avocados (2.0 mg/kg), citrus (1.25 mg/kg), soybean (0.79 mg/
kg) and figs (0.72 mg/kg) contain high ABA levels [123]. An in-
teresting field of research would be to generate crops with mag-
nified ABA levels through abiotic stress treatments or genome 
editing. Alternatively, the feasibility of ABA production in biore-
actors was recently demonstrated, using the oleaginous yeast 
Yarrowia lipolytica [124]. 

Finally, an increasingly used tool in agriculture is the use of 
ABA agonists to combat the severe drought episodes induced 
by the climate change [125-126]. Some of these agonists are 
even more potent and persistent than ABA in crops. Studies us-
ing ABA agonists in mammals have not been reported yet, rep-
resenting a long and promising road ahead in this field.
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