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Abstract

Purpose: To evaluate the overall performance of various 
Artificial Intelligence (AI) models in ophthalmology for the di-
agnosis of various ophthalmic diseases despite of variations in 
methodology, platforms built, and workflows. AI technologies 
can revolutionize ophthalmology and vision sciences through 
automating image analysis. 

Methods: A systematic search on EMBASE, Medline (via 
PubMed), CINHAL, Cochrane Library, Clinicaltrial.gov, Google 
Scholar, Scopus, and Web of Science was conducted for stud-
ies published up to March 2022. Two authors independently 
screened all titles and abstracts against predefined inclusion 
and exclusion criteria and extracted data. The Quality Assess-
ment of Diagnostic Accuracy Studies (QUADAS) tool was used 
to assess for risk of bias and applicability. The pooled sensitivity 
(SE), Specificity (SP), accuracy, and Area Under The Curve (AUC) 
were estimated using a random-effects model with a 95% Con-
fidence Interval (CI). An assessment of publication bias was per-
formed. The protocol of this meta-analysis was published on-
line PROSPERO under registration number CRD42021242593.

Results: Our meta-analysis included a total of 42 studies 
that met the inclusion criteria. The MESSIDOR database was 
most frequently used for training and testing among selected 
studies. Pooled performance of AI algorithms for included 
ophthalmic disorders were SE=92.93% (95% CI 91.01, 94.86), 
SP=88.73% (95% CI 83.55, 93.91), accuracy =94.62% (95% CI 
91.98, 97.27), and AUC=0.96 (95% CI 0.94, 0.98). 

Conclusion: Currently published AI algorithms are highly ac-
curate for diagnosing ophthalmic diseases and have the poten-
tial to unlock population-based screening for common eye con-
ditions. The adoption of standardized reporting frameworks 
and more prospective/randomized control trials are currently 
required to improve generalizability of AI for clinical practice.
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Introduction

There are 2.2 billion people with visual impairment globally, 
with almost half of these being preventable or yet to be ad-
dressed [1,2]. Vision impairment without intervention leads to 
significant morbidity, increases health services demand, and 
carries a global financial burden of an estimated $244 billion an-
nually [3]. With non-communicable diseases like diabetes and 
heart disease becoming increasingly common in young popula-
tions, retinal pathologies resulting from comorbidities have be-
come more frequent [4]. Similarly, Retinopathy of Prematurity 
(ROP), the most common cause of blindness in children world-
wide, carries an enormous healthcare burden subserved by 
limited neonatal intensive care services and late diagnosis [5]. 
Improving access to eye disease screening is a sensible solution, 
although as the global population rises, demographics shift 
towards ageing populations, and clinician availability remains 
insufficient, these challenges bottleneck eye care services [6].

Many believe Artificial Intelligence (AI) is a solution for the 
practical and financial challenges that inhibit population-based 
screening and diagnosis of eye diseases [7]. AI utilizes comput-
er-based algorithms and novel software to replicate human in-
telligence. Its application effectively replaces problem-solving 
and practical tasks that are otherwise laborious and time-inef-
ficient in domains of society which are bottlenecked by imbal-
anced service-to-demand ratios [8]. AI technologies have estab-
lished high efficiency, accuracy, and precision within medicine, 
and has already demonstrated applications to ophthalmology 
through data evaluation, segregation, electronic diagnosis, and 
potential outcome prognosis [9,10]. Machine Learning (ML) is 
a subset of AI that learns automatically from data sets in the 
absence of explicitly programmed rules [11]. Deep learning (DL) 
is a subclass of ML and trains itself using multiple layers of neu-
ral networks which are adaptable programming units inspired 
by the structure of human neurons. DL has demonstrated sig-
nificant potential in classification and feature extraction and has 
the ability to learn complex representations from raw data to 
improve pattern recognition [12,13]. Its image recognition and 
computer vision have made it a favorable tool for the grading 
of images, and individual studies show it has improved image 
analysis for diagnosis and preditction [13,14]. 

AI’s accuracy in automated diagnosis, time efficiency, and 
outcome prediction has enabled desirable applications within 
healthcare, but for its successful implementation within clini-
cal practice AI needs to ensure its accuracy is not inferior to 
clinicians [15]. Variations in methodology and platforms built 
for DL give an overall illusion its clinical validity is not yet war-
ranted. Indeed, various workflows for DL, variations in testing 
and validation set sizes, fluctuating disease definitions, and the 
absence of external validation by clinical experts may cloud the 
establishment of ground truth and diminish its trustworthiness 
[14,15]. This heterogeneity also complicates a formal evaluation 
of AI studies and is yet to be accounted for by the integration 
of specific AI/ML reporting frameworks [16]. Ethical legislation 
surrounding the use and scrutiny of AI continues to be of con-
cern to healthcare providers, and bench to bedside challenge 
can only be overcome by conducting studies that assess AI to 
a high degree of scrutiny not just in performance, but equally 
in ethics, effectiveness, replicability, and transparency [17,18].

Considering the timeliness of AI, this systemic review and 
meta-analysis investigated and scrutinized the ability of AI to 
diagnose all ocular disorders that satisfied our search criterion. 
The advantages and limitations of AI in the management of reti-

nal disorders were also explored.

Methods

This study was performed according to the Preferred Re-
porting Items for Systematic Reviews and Metanalyses (PRIS-
MA) statement [9]. The protocol of this meta-analysis was 
published online at the International Prospective Register of 
Systematic Reviews (PROSPERO) under registration number 
(CRD42021242593). There were no study restrictions imposed 
on different populations, races, ethnicity, and origin.

Literature search

A comprehensive systematic search on EMBASE, Medline (via 
PubMed), CINHAL, Cochrane Library, Clinicaltrial.gov, Google 
Scholar, Scopus, and Web of Science was conducted for stud-
ies published from January 2009 to March 2022. A variety of 
all possible keywords like ‘artificial intelligence and ophthalmol-
ogy’, ‘deep learning and ophthalmology’, ‘machine learning and 
ophthalmology’, ‘convolutional neural network and ophthal-
mology’, ‘deep neural network and ophthalmology’, ‘automat-
ed technique and ophthalmology’ were listed to avoid any data 
loss. No age, gender, and population filters were imposed. Two 
authors independently screened all titles and abstracts against 
predefined inclusion and exclusion criteria. Any differences in 
articles selected by the two were discussed with third author 
to reach a decision regarding inclusion. The reference lists of 
screened articles were also reviewed for any missed literature. 

Inclusion and exclusion criteria

The established inclusion criteria were as follows: (1) all pub-
lished data reporting the use of AI, DL, or ML in ophthalmol-
ogy, (2) studies that evaluated the sensitivity (SE), specificity 
(SP), accuracy, and area under ROC curve (AUC) in their study 
OR any one of the mentioned parameters, (3) studies provided 
an outcome of AI in ophthalmology for a pathological condi-
tion against healthy population sample sets of normal eyes, 
retinal images, and photographs, (4) studies provided informa-
tion about databases/methodology used, (5) studies clearly de-
scribed the type of AI used and detected eye disease, (5) studies 
published in English. All full-text studies including randomized 
control trials, original research articles, descriptive and analytic 
studies (cohort or case-control) were included. 

The exclusion criteria were as follows: (1) studies that did 
not measure conclusive performance outcomes, (2) param-
eters used to analyze data were different from defined ones, 
(3) incomplete studies, (4) poster or scientific presentations, (5) 
reviews, meta-analysis, opinion articles, letter to editor, short 
communications, and case reports.

Outcome measures

The primary outcome measures assessed the performance 
of AI in ophthalmology including SE, SP, accuracy, and AUC. Sec-
ondary outcomes were not defined in advance.

Data extraction and quality assessment

Data extraction was done twice as per defined inclusion cri-
teria and keywords, to avoid any risk of bias and possibility of 
missing data.20 Data extracted include first author’s name, pub-
lication year, used dataset or methodology information, mea-
sured parameters in terms of SE, SP, accuracy, and AUC. We 
used the Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) tool for assessing the quality of included diagnostic 



3

MedDocs Publishers

studies. The QUADAS-2 scale comprises four domains: patient 
selection, index test, reference standard, and flow and timing. 
The first three domains are used for evaluating the risk of bias in 
applicability. The overall risk of bias was categorized into three 
groups (low, high, and unclear risk bias). 

Data synthesis 

Statistical analyses were conducted using review manager 
(RevMan version 5.4, Cochrane collaboration, Oxford, UK). 
Overall performance measures along with 95% confidence in-
tervals (CIs) range were calculated for all defined primary indi-
cators i.e., sensitivity, specificity, accuracy, and AUC, and were 
represented by forest plot. A standard error of 0.05 was ob-
served in all tests. Data heterogeneity was checked, and pub-
lication bias was assessed using Egger’s test. Further, a Youden 
plot was generated against sensitivity and specificity measures 
to detect the test accuracy, and Youden’s index was calculated.

Results

Study selection

A total of 1130 potentially eligible records were extracted 
in the initial data retrieval process. During the screening, 488 
records were eliminated due to duplication, and 492 were 
eliminated based on the study title and abstract. Of the 150 re-
maining studies reviewed, 90 were excluded for not meeting 
inclusion criteria, and 18 were conference abstracts or poster 
presentations. Finally, 42 studies were included in the final me-
ta-analysis [12,21-62]. The process used to search and identify 
studies is illustrated in Figure 1.

Study characteristics

Selected studies were analyzed for the performance of AI 
in the diagnosis of common eye diseases, dataset/methodol-
ogy used, AI model tested, validation performed, and reference 
standards used to assess performance. These findings are de-
scribed in Supplementary Table 1. Indicators of performance 
including specificity, sensitivity, accuracy, and AUC are summa-
rized in Table 1.

Quality assessment and publication bias

The quality of included studies was assessed using the QUA-
DAS-2 tool and was presented in Supplementary Table 2. For 
patient selection and index tests, all studies were identified to 
exhibit a low risk of bias. An unclear risk of bias was found in 
flow and timing as well as reference standard domains for all 
included studies. Egger’s test for a regression intercept gave a 
P-value of 1.000, indicating no evidence of publication bias. 

Outcome measures

Sensitivity

Of the 42 selected studies, 13 studies, and 15 datasets re-
ported SE performance. The data indicators represent the data 
as valid with low error and no publication bias. The pooled SE 
of reviewed publications was 92.93% (95% CI 91.01, 94.86). 
No studies reported lower than 80% of SE, while Five studies 
reported 80-90%, Seven studies with >90%, and Three studies 
with 100 % SE. The I2 was 97% (Table 1, Figure 2). No publication 
bias was detected, Supplementary figure 1. 

Specificity

Twelve studies and 14 datasets reported SP performance. 
Only one study reported less than 70% SP (66.6%). All remain-
ing studies reported more than 80% SP of AI and 2 studies re-
ported 100% SP (Table 1, Figure 3). The overall SP of reviewed 
publications was 88.73% (95% CI 83.55, 93.91). The I2 of includ-
ed studies was 100%. No publication bias was detected, Supple-
mentary figure 2.

Accuracy

Accuracy is the second most reported performance indica-
tor, which was reported in Six studies among 42 selected stud-
ies. Only one study reported less than 85% accuracy, five stud-
ies reported less than 90% accuracy. The overall accuracy of 
AI among selected studies was 94.62% (95% CI 91.98, 97.27), 
(Table 1, Figure 4). The I2 of included studies was 100%. No pub-
lication bias was detected, Supplementary figure 3.

Calculation of area under the ROC Curve (AUC)

AUC is the most reported indicator of AI performance, which 
represents a combined performance measure across all viable 
classification thresholds. AUC values between 0.8 to 0.9 are 
considered excellent, and more than 0.9 considered to be out-
standing [63]. The overall AUC of studies was 0.96 (95% CI 0.94 
– 0.98). All reported results fall in the excellent and outstanding 
categories. The I2 of included studies was 100% (Table 1, Figure 
5). No publication bias was detected, Supplementary figure 4.

Test of Accuracy

Youden’s Index is a combined measure of SE and SP for in-
dexing test accuracy (Supplementary Figure 5). The maximum 
value of Youden’s index is 1 indicating a perfect test, while the 
minimum value possible is 0 when the test has no diagnostic 
value. This study recorded a Youden’s index of 0.85, indicating a 
high accuracy across studies.

Table 1: Performance indicators in selected studies.

Sl No
Author's Name, year and 

Reference number
Dataset Sensitivity (%) Specificity (%) Accuracy (%) Area under ROC Curve

1 Aquino et al., 2009 MESSIDOR - - 98.83 -

2 Haloi et al., 2015 MESSIDOR, ROC 97 96 96 0.982

3 Ahmed et al., 2015 MESSIDOR - - 97.8 -

4 Liskowski et al., 2016 DRIVE, STARE, CHASE DB - - 97 0.99

5 Asoaka et al., 2016 Private: 171 - - - 0.926

6 Grinven et al., 2016
MESSIDOR 91.9 91.8 - 0.972

EyePACS 83.7 85.1 - 0.895

7 Abràmoff M et al., 2016 MESSIDOR -2 96.8 87 - _
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8 Colas E et al., 2016 EyePACS 96.2 66.6 - 0.946

9 Gulshan et al., 2016
EyePACS-1, 90.3 98.1 - 0.991

MESSIDOR -2 87 98.5 - 0.99

10 Gargeya et al., 2017 EyePACS, MESSIDOR e-Optha2 94 98 - 0.97

11 Quellec et al., 2017

Kaggle, - - - 0.954

E-Ophtha - - - 0.949

DIARETDB - - - 0.955

12 Ambrósio R Jr et al., 2017 (RF/LOOCV) 100 100 - 0.996

13 Takahashi et al., 2017 9939 images (Posterior Pole Photographs) - - 80 -

14 Tan et al., 2017
CLEOPATRA - - 87.58 -

 - - 71.58 -

15 Oliveira et al., 2018

DRIVE 80.39 98.04 95.76 0.9821

STARE 83.15 98.58 96.94 0.9905

CHASE DB1 77.79 98.64 96.53 0.9855

16 Schmidt-Erfurth U et al., 2018 Coherence Tomography (OCT)
- - - 0.68

- - - 0.8

17 Lin et al., 2018 Kaggle 73.24 93.81 86.1 0.92

18 Chakravarty et al., 2018 REFUGE - - - 0.9456

19 Li Z et al., 2018 Private:48000+ 95.6 92  0.986

20 Chai Y et al., 2018 Private: 2554 - - 91.51 -

21 Mitra et al., 2018
MESSIDOR - 99.14 99.05 -

EyePACS - 98.17 98.78 -

22 Liu et al., 2018 HRF, RIM-ONE 86.7 96.5 91.6 0.97

23 Orlando et al., 2018
e-optha - - - 0.8812

MESSIDOR - - - 0.8932

24 Lam et al., 2018 EyePACS, e-optha - - 98 0.95

25 Grassmann et al., 2018 AREDS and KORA 94.3 84.2 - -

26 Zhang et al., 2018

DRIVE 87.23 96.18 95.04 0.9799

STARE 76.73 99.01 97.12 0.9882

CHASE DB1 76.7 99.09 97.7 0.99

27 Zhou W et al., 2018 MESSIDOR - - 99.83 -

28 Al-Bander et al., 2018 MESSIDOR and Kaggle - - 97 -

29 An G et al., 2019 Machine Learning - - - 0.963

30 Medeiros et al., 2019 Deep-Learning (DL) - - 83.7 -

31 Lin, H. et al., 2019
CC Cruiser - - 87.4 -

Kaggle - - 70.8 -

32 Zéboulon P et al., 2020 Machine learning algorithm 100 100 99.3 -

33 Varadarajan AV et al., 2020 EyePACS 85 80 - 0.89

34 Ahn H et al., 2020 Artificial intelligence ECcSMOTE II - - 99.05 -

35 Rim TH et al., 2020 Deep-Learning (DL) Algorithms RetiSort - - 99 -

36 Lee J et al., 2020 Machine learning classifiers - - - 0.881

37 Huang Y-P et al., 2020 VGG19 model 96.6 95.2 96 -

38 Tham YC et al., 2020 ResNet-50 90.7 86.8 - 0.94

39 Son J et al., 2020 IDRiD, e-Ophtha, MESSIDOR 97.2 96.8 - 0.99

40 Li Z et al., 2020 Deep Learning 99.5 99.5 99.5 1

41 Dai L et al., 2021 DeepDR 92.8 81.3 - 0.95

42 Luo X et al., 2021 EfficientNet-B3 99.49 97.86 99.02 0.99
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Figure 1: Summary of study selection process Preferred 
Reporting Items for Systematic Review and Meta-Analyses flow 
diagram.

Figure 2: Forest plot of sensitivity analysis of selected studies.

Figure 3: Forest plot of specificity analysis of selected studies.
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Figure 4: Forest plot of accuracy measurement of selected studies.

Figure 5: Forest plot of area under receiver operating characteristics curve of selected studies.

Sup Figure 1: Funnel plot of publication bias of sensitivity 
analysis.

Sup Figure 2: Funnel plot of publication bias of specificity 
analysis.

Sup Figure 3: Funnel plot of publication bias of accuracy 
analysis.

Sup Figure 4: Funnel plot of publication bias of calculation of 
area under the ROC curve.
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S. No
Author's Name, year, and 

Reference

Risk of Bias Applicability Concerns

Patients 
Selection 

Index 
Test 

Reference 
Standard 

Flow and 
Timing

Patients Selection Index Test
Reference 
Standard

1 Aquino et al., 2009 ? ? ?

2 Haloi et al., 2015 ? ? ?

3 Ahmed et al., 2015 ? ? ?

4 Liskowski et al., 2016 ? ? ?

5 Asoaka et al., 2016 ? ? ?

6 Grinven et al., 2016 ? ? ?

7 Abràmoff M et al., 2016 ? ? ?

8 Colas E et al., 2016 ? ? ?

9 Gulshan et al., 2016 ? ? ?

10 Gargeya et al., 2017 ? ? ?

11 Quellec et al., 2017 ? ? ?

12 Ambrósio R Jr et al., 2017 ? ? ?

13 Takahashi et al., 2017 ? ? ?

14 Tan et al., 2017 ? ? ?

15 Oliveira et al., 2018 ? ? ?

16 Schmidt-Erfurth U et al., 2018 ? ? ?

17 Lin et al., 2018 ? ? ?

18 Chakravarty et al., 2018 ? ? ?

19 Li Z et al., 2018 ? ? ?

20 Chai Y et al., 2018 ? ? ?

21 Mitra et al., 2018 ? ? ?

22 Liu et al., 2018 ? ? ?

23 Orlando et al., 2018 ? ? ?

24 Lam et al., 2018 ? ? ?

25 Grassmann et al., 2018 ? ? ?

26 Zhang et al., 2018 ? ? ?

27 Zhou W et al. 2018 ? ? ?

28 Al-Bander et al., 2018 ? ? ?

29 An G et al., 2019 ? ? ?

30 Medeiros et al., 2019 ? ? ?

31 Lin, H. et al., 2019 ? ? ?

32 Zéboulon P et al., 2020 ? ? ?

33 Varadarajan AV et al., 2020 ? ? ?

34 Ahn H et al., 2020 ? ? ?

Sup Table 2: Quality Assessment of Diagnostic Accuracy Studies for included studies.
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35 Rim TH et al., 2020 ? ? ?

36 Lee J et al., 2020 ? ? ?

37 Huang Y-P et al., 2020 ? ? ?

38 Tham YC et al., 2020 ? ? ?

39 Son J et al., 202059 ? ? ?

40 Li Z et al., 2020 ? ? ?

41 Dai L et al., 2021 ? ? ?

42 Luo X et al., 2021 ? ? ?

Note:  = No risk bias; ? = Unclear risk bias; 😟 = High risk of bias

Discussion

This systematic review and meta-analysis included studies 
up to March 2022 and demonstrated AI achieved a high perfor-
mance for the recognition of eye diseases. Performance in sen-
sitivity was 93%, specificity 88.73%, accuracy 94.62%, and AUC 
0.96. Of the various AI platforms used, MESSIDOR database was 
most frequently utilized for training and testing amongst our 
selected studies. A Youden’s index of 0.85 indicated that pooled 
estimates were of high accuracy. These results suggest AI tech-
nologies may assist in the diagnosis of eye diseases and improve 
access to screening and management of these conditions [64].

AI in ophthalmology has gained popularity over the last de-
cade, evidenced by the plethora of publications accrued and 
innovations since acquired [65]. Our study set ranged from 
2009-2022 and despite the impressive performance, significant 
methodological deficits were noted amongst the 42 included 
studies. After QUADAS assessment it was clear most retrospec-
tive studies included data labels and quality reference stan-
dards which were not primarily intended for the purpose of 
measuring AI’s utility and performance. As a result, the trans-
lation of these results to real-world outcomes may be limited. 
Furthermore, smaller training sets in the learning phase of 
some DL models may lead to poor prediction accuracy due to 
overfitting, or rather them being insufficient representatives 
of disease [66]. If this occurs, accuracy suffers in the long term 
and the model may miss important features of a disease or ill-
ness. External validation is therefore critical to the evaluation of 
a model’s accuracy and ensuring a ground truth is addressed. 
Unfortunately, many studies did not perform an external vali-
dation of the model in a separate test dataset which is crucial 
to ensuring real-world clinical performance of DL, eliminating 
bias, and ensuring diagnosis/prediction accuracy of the model 
[13]. Low evaluative measures limit the validity of performance 
parameters particularly AUC, and hints to the presence of un-
published publication bias. Robustly reported evaluative mea-
sures would have provided an objective standard and needs to 
be confronted in future publications to ensure reliability of AI 
and enable comparison between DL models [29, 42, 43, 49, 51].

In the past, AI has lacked directives that would remove het-
erogeneity between studies and allow its transition from bench 
to bedside. To improve its integrity, guidelines including the 
SPIRIT-AI [67], CONSORT-AI [68], STARD-AI [15], and TRIPOD-AI 
[69] statements are currently being developed and phased into 
studies under published guidance from the EQUATOR network. 
SPIRIT-AI67 and CONSORT-AI [68] statements are the first inter-
national standards for clinical trials of AI systems and aim to 

improve the standard of design and delivery by providing com-
pleteness of intention and transparency of reporting. In con-
trast, STARD-AI [15] and TRIPOD-AI[69]are specific to studies 
investigating diagnostic accuracy and prognostic modelling, and 
aim to improve methodology reporting and outcome measures, 
and to standardise nomenclature. This is a significant step for AI 
because reporting of clinical prediction models is currently poor 
and a threat to its clinical integrity. The implementation of these 
protocols will be a welcomed improvement to the field of AI to 
ensure its performance and safety in clinical practice.

In addition, few studies were Randomized Control Trials 
(RCT) or prospective studies, while a large proportion were ret-
rospective cohort studies. Using retrospective data is certainly 
a convenient and less costly way of testing AI’s accuracy which, 
by design, inherently demands large quantities of data to op-
timize its neural networks. An unfortunate side effect is the 
current literature does not compare AI’s performance against 
experts in a clinical, real time setting. Hence there exists a large 
potential for the development of prospective studies and RCTs 
which may compare the applicability of these algorithms in clin-
ical practice. If undertaken, it cannot be underestimated how 
important these applications can be for rural and developing 
areas particularly. AI techniques can smoothen the multistage 
process of screening, staging and treatment decision for a con-
dition, thereby sharing the burden of clinical experts and pro-
viding a greater population outreach [70]. In Australia, remote 
and regional communities are associated with less frequent 
eye checkups and are even lower in First Nations people [71]. 
Indigenous Australians also present later to eye health profes-
sionals for a presenting problem relative to Non-Indigenous 
Australians, predisposing them to preventative ocular diseases 
[71]. As a result, there have historically been higher instances 
of pterygium, cataract, ocular trauma, and glaucoma in rural 
populations [72]. Here, AI has the potential utility of providing 
basic eye health reports and information to remote regions that 
lack access to consistent eye health-care services. Moreover, AI 
systems will be invaluable to Indigenous communities particu-
larly by negating many current concerns pertaining to Non-In-
digenous clinicians, interpreters, cultural and language barriers 
which currently contribute to health gaps between Indigenous 
and Non-Indigenous Australians [73,74]. To date, only few AI 
studies have been the subject of prospective cohort studies but 
the preliminary results have so far been positive [73-77].

Prediction tools are another innovative and potentially 
positive application for AI, especially in comorbid populations 
where retinopathies and retinal structure abnormalities are as-
sociated with comorbidities. In contrast to classical prediction 
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models that rely on cross-sectional data and are prone to over-
fitting, AI techniques can incorporate longitudinal data which 
optimizes prediction over time without human intervention 
[78-81]. Despite these unique characteristics, prediction mod-
els are not yet optimized and are subject to the same scrutiny 
as other AI technologies within medicine. Arcadu et al predicted 
DR worsening in 529 patients at 6, 12, and 24 months with an 
overall AUC of 0.68 using deep CNN (DCNN) and random forest 
aggregation [82]. Schmidt-Erfurth et al successfully predicted a 
2-year progression of intermediate AMD to choroidal neovascu-
larization or geographic atrophy in 495 eyes with AUC= 0.68 & 
0.80, respectively [36]. Lastly, a recent systematic review sum-
marized the ability of various DL models to isolate and predict 
geographic atrophy progression, an end-stage feature of chron-
ic AMD, reported a low R2value of 0.32 in the studies that pre-
dicted progression [83]. An online survey of clinicians on the 
use of AI in ophthalmology, dermatology, radiology and radia-
tion oncology revealed improved access to disease screening as 
the greatest perceived advantage to the use of AI [84]. Whilst AI 
shows potential utility in ophthalmology for disease prediction 
and progression, its reliability remains to be optimized and is an 
ongoing area of emerging research.

Currently, regulatory agencies such as the United States 
Food and Drug Administration (USFDA) and Therapeutic Goods 
Australia (TGA) loop AI/ML under the umbrella of software as a 
medical device (SaMD)[85, 86] when they are being approved 
for therapeutic use. In 2018 the first DL system in ophthalmol-
ogy to be cleared by USFDA was IDx-DR for automated diagnosis 
of more-than-referable DR [87]. IDx-DR utilizes AI as a fundus 
image analyzer and provides diagnosis and referral to a special-
ist if a pathology is detected. In 2020 EyeArt also achieved USF-
DA clearance for detecting clinical DR and vision-threatening 
DR retinopathy in adults with diabetes [88]. Both technologies 
received 510(k) clearance by the U.S. Food & Drug Administra-
tion for DR meaning the technologies demonstrate themselves 
as safe and effective compared to a similar, legally marketed al-
gorithm. These clearances are landmark occurrences for AI/ML 
in Ophthalmology because pathways by governing regulatory 
bodies are evolving entities with stringent criteria needed to 
prove risk and functionality. Despite being proven safe in com-
parison with other marketable technologies, the more political 
challenge remains in its adoption to clinical practice whilst phy-
sicians and patients still lack confidence and trust [89]. There-
fore, whilst reporting criteria and regulatory bodies are hurdles 
which may be succeeded by improvements previously outlined, 
AI/ML will face an uphill popularity battle before earning a place 
at the clinician’s desk.

The present meta-analysis is one of few systematic reviews 
and meta-analysis interpreting the performance of AI in oph-
thalmology. It comprises a total of 42 studies based on 23 differ-
ent databases, and our results suggest that AI has immense po-
tential in ophthalmology for image interpretation. The breadth 
of studies selected encompasses performance across various 
important pathological conditions in ophthalmology, highlight-
ing the generalizability of AI for image analysis.

Despite this, our findings have several limitations. Firstly, be-
cause our aim was broadly defined and lent itself to a pooled 
analysis, AI performance according to ocular pathology was not 
investigated. Even so, our analysis shows that across most stud-
ies there is a high sensitivity, specificity, and AUC. Secondly, we 
excluded studies that did not report performance indicators like 
sensitivity, specificity, accuracy, and AUC. This limited the scope 

of eye diseases available for analysis. Thirdly many studies have 
various methodological deficits as detailed earlier, making their 
reported diagnostic accuracy potentially unreliable, and our 
pooled accuracy potentially an overestimation of true accuracy 
in real-world practice. Fourthly we were not able to assess the 
selected studies against any standard reporting framework as 
AI-specific reporting guidelines including SPIRIT-AI [67], CON-
SORT-AI [68], STARD-AI [15], and TRIPOD-AI [69] are not widely 
adopted by current literature. Lastly, our study aimed to have a 
comprehensive overview of AI in ophthalmology, it was beyond 
our scope to statistically compare between different imaging 
modalities, thus leading us to accept their innate differences. 
Despite this, the imaging modalities used are all diagnostically 
accepted means of screening for eye diseases. 

A primary concern after analyzing the chosen studies was 
their significant heterogeneity. This may limit the generaliz-
ability of AI performance. Reporting standards for ML related 
studies across the globe are currently unsatisfactory, and with 
AI being of great ethical concern there needs to be a governing 
force for regulating its use in research and clinical practice. The 
universal adoption of SPIRIT-AI, CONSORT-AI, TRIPOD-AI, and 
STARD-AI frameworks in future studies will eliminate inconsis-
tencies, homogenize means of data reporting and ensure data 
reproducibility [90]. While the integration of AI into healthcare 
is likely to be widespread in the future it remains a current chal-
lenge for clinicians and patients to fully trust the potential of AI/
DL. Therefore, guidelines to regulate AI use and build appropri-
ate ethical legislation to safeguard concerns pertaining to medi-
cal error, control over AI, and patient data protection need to be 
developed in a timely fashion. 

The following would benefit for streamlining AI into ethical 
legislation; 1) encouraging the external validation of DL and 
AI systems from clinicians or experienced graders to reach a 
ground truth, 2) guiding methods for determining appropriate 
training and test set size and 3) mandatory reporting of sensitiv-
ity, specificity, accuracy, and AUC. By adopting the recently con-
structed frameworks for reporting AI, studies will become more 
reliable in their relatedness to clinical practice and deemed 
more trustworthy by design. 

AI is a rapidly evolving field with immense potential in 
healthcare. This study has demonstrated AI has high and, in 
some cases, excellent performance in the field of ophthalmol-
ogy. These technologies may soon play an increasingly signifi-
cant role in the diagnosis and treatment of ocular pathologies. 
The adoption of standardized reporting frameworks and more 
prospective/randomized control trials are currently required to 
improve generalizability of AI for clinical practice.
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