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Introduction

As the world population has aged, dementia has become a 
common diagnosis in aging populations and the numbers will 
increase in the forthcoming years. Globally, an estimated 47 
million people are affected by dementia [1]. Alzheimer’s Dis-
ease (AD) is the most common cause of dementia and one of 
the leading causes of morbidity and mortality in older adults. 

While the pathogenesis of AD remains unclear, according to 
the evidence of epidemiologic studies, there are mainly three 
hypotheses that may explain the pathogenesis of Alzheimer’s 
Disease [2]:

Extracellular amyloid plaques accumulation due to in-1. 
creased production of amyloid beta 42 (Aβ42), genetically high-
risk individuals and reduced metabolism and removal among 
older individuals,

Vascular disease and also vascular risk factors such as 2. 
diabetes, hypertension, hyperlipidemia, hyperhomocysteine-
mia are determinant of vascular dementia but also of increased 
amyloid deposition and neurodegeneration,

Dementia is due primarily to aging and neurodegen-3. 
eration, independent of amyloid and vascular disease.

There is a long presymptomatic period between the onset of 
biochemical changes in the brain and the development of clini-

cal symptoms of AD, suggesting that long-term epidemiologic 
studies are needed to show the gene-lifestyle environmental 
association of amyloid vascular disease and neurodegeneration. 
The mean age at diagnosis of dementia was 82 years, and clini-
cal memory complaints in these patients began 16 years before 
diagnosis in the Rotterdam Study [3]. Therefore, it is important 
for clinicians to recognize early signs and symptoms of demen-
tia and to figure out potentially modifiable risk factors and early 
disease markers. 

AD is characterized by a series neuropathologic changes, 
including neuronal loss, formation of amyloid plaques, ap-
pearance of neurofibrillary tangles, and synaptic loss. Amyloid 
plaques and neurofibrillary tangles result from an aberration in 
deposition of the amyloid beta 42 peptide and the hyperphos-
phorylated tau protein, respectively, and these depositions lead 
to neuronal loss and neurotoxicity in the brain affected by AD. 
However, these changes in the brain are not found through-
out the brain and preferentially affect specific brain areas in a 
manner that is essentially consistent from patient to patient 
[4]. Data obtained by electron microscopy, immunocytochemi-
cal and biochemical analysis on synaptic marker proteins in AD 
biopsies and autopsies indicate that synaptic loss in the hip-
pocampus and neocortex is an early event and the major struc-
tural correlate of cognitive dysfunction. From all cortical areas 
analyzed, the hippocampus appears to be the most severely af-
fected by the loss of synaptic proteins, while the occipital cortex 



MedDocs eBooks

2Alzheimer’s Disease & Treatment

is affected least [5]. Furthermore, synaptic function is impaired 
in living neurons, as demonstrated by decrements in transcripts 
related to synaptic vesicle trafficking [6]. On the other hand, 
sporadic AD is associated with peripheral insulin abnormalities, 
which might influence cerebral glucose metabolism in the brain 
[7]. It was demonstrated the hypometabolism of hippocampal 
glucose in patients with AD compared to control individuals [8], 
and it was hypothesised that reduced glucose utilisation and 
energy metabolism may be two of the main causes of the im-
paired cognition observed in AD [9]. In addition, insulin dysreg-
ulation is one of the potential key factors in the pathogenesis 
of AD, which is associated with both age-related cognitive im-
pairment and increased risk of AD. Conditions related to insulin 
dysregulation, such as obesity, diabetes mellitus, cardiovascular 
disease, and hypertension have increased in prevalence, raising 
concern about their potential deleterious effects on brain func-
tion [10]. Furthermore, epidemiological evidence has suggested 
that diabetes mellitus significantly increases the risk for AD, in-
dependent from vascular risk factors [11]. Higher fasting insulin 
levels and reduced cerebrospinal fluid-to-plasma insulin ratios, 
suggestive of Insulin Resistance (IR), have been observed in pa-
tients with AD apolipoprotein E epsilon 4 allele (ApoE-ε4) [12]. 
AD or vascular dementia could be a part of metabolic syndrome 
or even type-3 diabetes with some exaggerations [13,14]. How-
ever, the role of insulin and insulin resistance on cognition in 
non-diabetic patients is obscure, especially in older adults.

Insulin and cognition

Recent data, has pointed out the involvement of insulin in 
cognitive processes, and it is generally accepted that both insu-
lin and Insulin-like Growth Factor I (IGF-I) are important modu-
lators of brain function and also both have the modulatory ef-
fects on cognitive processes [15].  

Insulin is transported into the Central Nervous System (CNS) 
across the Blood Brain Barrier (BBB) by a saturable receptor-
mediated process. This transporter is not static but has been 
shown to alter the transport rate of insulin into the CNS under a 
variety of circumstances. For example, insulin transport is likely 
slower in Alzheimer’s Disease than in normal aging. In adults, 
the transporter is partially saturated at euglycemic levels, sug-
gesting that its role is not to signal hypoglycemic events to the 
brain [16]. Those insulin receptors, located in astrocytes and 
neuronal synapses, are highly concentrated in the hippocam-
pus, entorhinal cortex, and frontal cortex is consistent with evi-
dence that insulin influences memory [17]. Little amount or no 
insulin is produced in the CNS, so that CNS insulin is largely de-
rived from peripheral insulin. As such, CNS insulin is dependent 
on the peripheral insulin. 

It is possible that insulin plays a key role in learning and 
memory shown insulin receptors localization in the hippocam-
pus, insulin receptors changes in the hippocampus secondary 
to spatial learning, and improvements in memory secondary to 
insulin administration in both animal models and human stud-
ies. Although it is not definite how insulin makes its action on 
cognition, several pathways are likely influenced [18].

In vitro experiments demonstrated that tau phosphorylation 
is regulated by insulin and IGF-1 [19,20]. In an experimental 
study, deterioration of the cerebral insulin-IGF action by Intra-
cerebroventricular (ICV) Streptozotocin (STZ), a diabetogenic 
drug, leads to a deficit in energy metabolism and progressive 
cognitive impairment in rats  [21]. Accordingly, Isik et al reported 
that Curcumin can be effective in ICV STZ-induced neurodegen-

eration by increasing IGF-1 levels, which may indicate neuro-
genesis [22]. It was also demonstrated that both the ICV injec-
tion of insulin in animals and the administration of insulin to 
healthy volunteers improves memory performance indicating a 
positive effect on cognition [23,24]. This improvement has also 
been observed in humans with intranasal insulin administration 
[25], after which insulin-like peptides follow perivascular chan-
nels and reach the brain within minutes. Insulin may facilitate 
memory through direct receptor-mediated effects, because of 
the special localization of these receptors as mentioned above 
[26]. Likely memory-related mechanisms include modulation 
of synaptic structure and function, long-term potentiation, 
and CNS levels of neurotransmitters such as acetylcholine, do-
pamine and norepinephrine that are known to influence cog-
nitive function [17, 26]. Specific regional effects of insulin on 
glucose metabolism via insulin-sensitive glucose transporters 4 
and 8 may also affect brain function [27]. 

Insulin receptor density is up-regulated in Alzheimer’s Dis-
ease [28] indicating an impairment of the insulin signal trans-
duction cascade similar to that seen in non-insulin-dependent 
diabetes mellitus. So, sporadic AD was speculated as the brain 
equivalent of non-insulin-dependent diabetes mellitus [13]. 
Therefore, it is not surprised that insulin/IGF-I function appears 
dysregulated in widely different neurodegenerative diseases 
such as AD [29]. 

In the Rotterdam study, it was pointed out that increased in-
sulin levels may be associated with a cognitive decline in a pro-
spective study but just in women patients. The results showed 
no significance when they made the analysis for whole group 
[30]. Similarly, Isik et al. did not find any statistical significant 
difference among 5 different cognitive status groups such as AD, 
vascular dementia, mixed dementia, mild cognitive impairment, 
and normal cognition group in a cross sectional study [31]. 

It is still not completely understood how insulin resistance 
affects the cognitive profile. Many of the important functions of 
insulin in the brain are disrupted in insulin-resistant conditions. 
Interestingly, prolonged peripheral hyperinsulinemia associated 
with IR reduces insulin transport across the BBB, subsequently 
lowering insulin levels and activity in the brain; this effect may 
be relevant to findings of reduced cerebrospinal fluid insulin 
and brain insulin-signaling markers in AD [17,32]. This CNS insu-
lin deficiency may potentially cause to deterioration in memory, 
neuroprotective effects, synaptic transmission, as well as likely 
contributing to the development of neurodegenerative disease 
[33,34]. IR and hyperinsulinemia are implicated in a number of 
pathophysiological processes related to AD [17,35]. It was dem-
onstrated that reduced brain insulin signaling is associated with 
increased tau phosphorylation and Aβ levels in a STZ induced 
model of diabetes mellitus [36], and also insulin promotes the 
release of intracellular Aβ in neuronal cultures and accelerates 
Aβ trafficking to the plasma membrane [37]. Similarly, intrave-
nous insulin infusion also raised plasma Aβ42 levels in patients 
with Alzheimer’s Disease but not in normal adults, an effect 
that was exaggerated in patients with Alzheimer’s Disease with 
higher body mass indexes [38]. In addition, impaired insulin or 
IGF-1 signaling can result in the hyper-phosphorylation of tau, 
which can cause cell death mediated by apoptosis, mitochondri-
al dysfunction or necrosis [39,40] and promote oxidative stress, 
which contributes to the neurodegeneration cascade, and leads 
to dementia-associated behavioral and cognitive deficits [41]. 
For this reason, it seems that IR causes tau phosphorylation and 
neurofibrillary tangle formation and increased beta amyloid ag-
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gregation in late onset AD [42].  

In a recent study, Zhao and Townsend are demonstrated that 
IR and Aβ disrupt common signal transduction cascades includ-
ing the insulin receptor family/Phosphoinositide 3-kinase/Akt/
Glycogen synthase kinase-3 pathway. They reported that both 
disease processes contribute to overlapping pathology, thereby 
compounding disease symptoms and progression [17]. 

The age-associated decline in the metabolic rate and utili-
zation of glucose by the frontal cortex imply that IR can cause 
executive dysfunctions in older people, not only global cogni-
tive impairment [11,43,44]. IR may cause decreased cortical 
glucose utilization especially in hippocampus and entorhinal 
cortex and also increased oxidative stress with Advanced Glyca-
tion End-products (AGEs) [45,46]. AGEs bind the receptor for 
advanced glycation end products, and promote Nuclear factor 
kappa beta (NF-kB), which is a transcription factor and crucial 
mediator of inflammation [47]. It mediates inflammatory cas-
cade and vascular injury leading to neurodegeneration. AGEs 
have been demonstrated in amyloid-containing senile plaques, 
tau-containing neurofibrillary tangles, neurons and glia [48].

In humans, raising plasma insulin levels through intravenous 
infusion increased cerebrospinal fluid levels of the Aβ 42 pep-
tide; this effect was exacerbated by age [49]. That insulin may 
interfere with Aβ degradation via its regulation of the metallo-
protease Insulin-Degrading Enzyme (IDE) may also be an impor-
tant mechanism in Late-Onset Alzheimer’s Disease (LOAD) that 
the Aβ clearance rather than Aβ production may be of special 
importance [50]. While the Aβ-degrading capacity of IDE in the 
AD brains is approximately 50% of that of controls, insulin deg-
radation is decreased by about 30% [51]. Decreased IDE mRNA 
and IDE activity have been found in the hippocampus of LOAD 
[52]; however, in neurons adjacent to senile plaques, IDE is up-
regulated [53]. 

In our previous study, it was demonstrated that the IGF-1 
levels decreased in parallel with impaired cognition and that 
Curcumin treatment improved both the IGF-1 levels and im-
paired cognition in the ICV STZ treated rat model. Besides the 
anti-inflammatory and antioxidative properties of Curcumin, 
the IGF levels in the ICV STZ models were also improved in this 
study. Improvements in the IGF-1 levels with Curcumin treat-
ment may be a sign of the initiation of neurogenesis. It can be 
speculated that in addition to neuroprotection, neurogenesis is 
the main effect of Curcumin [22]. 

Recent studies have shown that the plasma and tissue activi-
ties of cholinesterase, which may potentiate both amyloid de-
position and the toxicity of amyloid deposits [54], are elevated 
in patients with Alzheimer’s Disease and IR [55]. Both IR and 
impaired cortical cholinergic function, however, have acceler-
ated the amyloid deposition in the brain with Alzheimer’s Dis-
ease [54-56]; Craft et al. have hypothesized that peripheral IR 
can affect CNS insulin levels, cognition and Aβ levels [57], and 
butyrylcholinesterase and acetylcholinesterase may be indi-
rectly involved in the pathogenesis of IR in AD [58-60]. Different 
from this hypothesis, Hoyer has indicated that in LOAD, dam-
age to the insulin signal transduction cascade may be an early 
and dramatic event and related with desensitization via the 
β-subunit of the insulin receptor in the neuronal insulin signal 
transduction cascade rather than peripheral IR [61]. A relation-
ship between glucose metabolism and cholinergic transmission 
and β-amyloid has also been derived from animal experimental 
approaches suggesting functional links between cortical cholin-

ergic activity and glucose metabolism in cholinoceptive target 
regions [62,63]. Besides, Randell et al. suggested that levels of 
serum butrylcholinesterase may be related to IR [58]. For these 
reasons, an investigation of whether there is a relation between 
inhibition of cholinesterases and IR in the patients with LOAD, 
is not a fishing expedition. It has been also thought that IR in 
the brain may be more important than peripheral IR in LOAD 
[31]. In our current study, it was demonstrated that inhibition of 
cholinesterase by galantamine did not affect IR indexes over the 
18-month period although it improved the cognitive function in 
the patients with LOAD compared to their baseline values [64]. 
These results indicated that cholinergic deficit and IR may play 
a role in the pathogenesis of LOAD by different mechanisms. 
Due to the complexity of disease pathogenesis, it is too early 
to make general comments, and further longitudinal and long-
term studies in the larger population on this issue are needed. 
Unlike the findings of other studies, in LOAD, intracerebral IR 
may be more important than is peripheral IR, and neuronal IR 
and cholinergic deficit may play a role in the pathogenesis of 
the disease by different mechanisms. Perhaps inhibition of bu-
tyrylcholinesterase as well as acetylcholinesterase should also 
be evaluated in order to determine the interaction between 
cholinesterase inhibition and IR in LOAD.

Treatment

Taking into consideration the interaction between the IR and 
AD, it has been suggested that treatment strategies aimed at 
improving insulin sensitivity may be effective to reduce the risk 
of developing the pathology associated with AD. It may be ap-
propriate to combine antidiabetic drugs such as a analogues of 
the incretin Glucagon-Like Peptide-1 (GLP-1), Dipeptidyl Pepti-
dase-4 (DPP-4) inhibitors, pioglitazone, intranasal insulin with 
NMDA receptor antagonists, such as memantine, and inhibitors 
of the Mammalian Target of Rapamycin (mTOR) activity, such as 
rapamycin and its derivatives (rapalogs) [65-68]. The thiazoli-
dinediones, widely used in the treatment of type 2 diabetes, act 
as agonists at the nuclear receptor, Peroxisome Proliferator-Ac-
tivated Receptor gamma (PPARγ), a ligand-inducible transcrip-
tion factor that increases insulin sensitivity, decreases insulin 
resistance and regulates lipid metabolism and inflammation 
[69]. The increased occurrence of insulin resistance in dementia 
suggests improving insulin effectiveness may have therapeutic 
benefit for patients with AD and also for prevention of demen-
tia with thiazolidinediones and other drugs that decrease insu-
lin resistance [12,30,44,56]. PPARγ plays critical roles in energy 
metabolism due to its direct effects on mitochondrial function 
and ultimately ATP production. Mitochondria may be key play-
ers in the cerebral hypometabolism observed in AD, as this or-
ganelle plays critical roles in both energy metabolism as well 
as neuronal apoptosis [70]. It has postulated that these effects 
of PPARγ agonists responsible for their beneficial effects on 
memory and cognition in AD patients [71]. One study showed 
that infusion of insulin enhances the performance of cognitive 
functions in non-diabetic people [72]. In addition, DPP-4 en-
zyme modulates several natural substrates such as chemokines, 
cytokines, neuropeptides, circulating hormones, and bioactive 
peptides, which acts as regulatory role for peptide hormonal 
metabolism and amino acid transport [68]. DPP-4 inhibitors 
prolong lifespan of GLP-1 which is an important substrate of 
DPP-4. GLP-1 have been demonstrated for their protective 
action on synapses against toxic effects of amyloid in the hip-
pocampus [73], and also chronic intraperitoneal injection of the 
Val(8)GLP-1 rescued synaptic plasticity by preventing synaptic 
degradation in AD mouse model [74]. It was also indicated that 
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6-month sitagliptin therapy was associated with increased cog-
nitive functions in the elderly diabetic patients with and without 
AD [75]. In human studies, intranasal insulin increases insulin 
levels in CSF and acutely enhances memory [76]. Craft and co-
workers reported that intranasal-administered insulin improves 
memory for adults with mild cognitive impairment and LOAD 
[77,78]. 

Glycogen syntase-3 is also a potential target for central ner-
vous system therapies [79]. The problem is which patients will 
benefit from the drugs and who will be the nonresponders. Also 
there are studies on the agents that target the cardiovascular 
and cerebrovascular risk factors such as hypertension, hyperlip-
idemia, and insulin resistance, which have sufficient epidemio-
logical and preclinical evidence to warrant further investigation. 
AD is a catabolic state in advanced cases and this may also effect 
the role of insulin resistance in severe cases. Gauthier clearly 
emphasizes that initiating treatment early in AD is important 
and reinforces the necessity to assess behavior and activities of 
daily living [80].

Conclusion

AD pathophysiology has been studied for decades. Several 
types of studies indicate a relationship between obesity, insu-
lin resistance, type 2 diabetes and neurode generation. Besides, 
current data supports that insulin resistance may play key role 
in the pathogenesis of the AD, and insulin sensitizer agents such 
as thiazolidinediones, DPP 4 inhibitors may have therapeutic 
benefit for patients with Alzheimer’s type dementia and also for 
prevention of the disease. Therefore, we highlight that insulin 
resistance should be taken into account in both explaining the 
pathophysiological mechanisms and the managing of the AD.
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