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Abstract

The global prevalence of dementia including Alzheimer’s 
disease (AD) is estimated to reach 44 million people. AD is 
the most common neurodegenerative disorder described by 
the presence of extracellular amyloid plaques, intracellular 
hyperphosphorylated tau protein and neuronal loss as main 
hall marks of the disease. Clinically AD is recognized by the 
failure of memory and cognitive decline that become severe 
with the progression of the disease. While most of the cases 
of AD are sporadic and occurs over the age of 65 years, the 
disease may also develop in autosomal dominant familial 
manner and affects the relatively young population. The dis-
ease begins due to increased level of oxidative stress which 
is a hallmark of aging and affects many cellular processes 
at macromolecular level including alteration of lipids, pro-
teins and DNA by peroxidation, oxidation and methylation. 
AD may also involve changes in the expression of proteases, 
contributes to the non-amyloidogenic and amyloidogenic 
pathways and cleaves the amyloid precursor protein into 
the soluble non-disease causing and the insoluble disease 
causing components. FDA approved pharmacological in-
terventions against the disease pathology are acetylcholin-
esterase inhibitors and NMDA receptor antagonist, both of 
which are not successful and giving positive results in chang-
ing the disease pathology, rather only provide symptomatic 
treatment. To combat with the disease, now there is a need 
to focus on factors that can potentially modify the disease 
pathology or delay the process of disease progression. Sev-
eral molecular targets such as amyloid peptide, tau protein, 
neuroinflammation and oxidative stress have also been ob-
served in advanced stage of AD. Therefore, researchers are 
considering different aspects of disease treatment including 
amyloid and tau immunotherapy, autophagy, antioxidant 
and anti-inflammatory therapy, inhibition of tau kinases, 
secretases modulation and others. Among them we have 
discussed some of the major therapeutic options that are 
currently in consideration and for which clinical trials are 
being going on.
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Introduction

Alzheimer’s Disease (AD) is the most common neurode-
generative disease defined by the formation of extracellular 
β-amyloid plaques and intracellular neurofibrillary tangles 
along with progressive failure of memory and cognition that in-
creases with the increasing concentration of Beta Amyloid (Aβ) 
and ultimately leads to damaging neuronal processing, tau pro-
tein hyper phosphorylation and damage to synaptic processes. 
The disease usually occurs sporadically but is also inherited in 
autosomal dominant manner. The onset usually occurs after the 
age of 50-55 years and the incidence of the disease increases 
with increasing age, while about half of the early cases are fa-
milial. The disease starts with failure of memory and progresses 
to such a large extent that the patient becomes bedridden and 
cannot even recognize his environment.

The plaques in the disease are formed by the aggregation of 
39-42 amino acid peptides named Aβ produced by the cleav-
age of Amyloid Precursor Protein (APP). These plaques are sur-
rounded by astrocytes and microglia, the later when activated 
by the presence of amyloid plaques release inflammatory cy-
tokines like IL-1β, IL-6 and TNF-α. After cleavage of APP the gen-
erated Aβ peptide forms oligomers, protofibrils and fibrils by 
means of self-aggregation. The Aβ oligomers and not the mono-
mers or fibrils play role in disease pathogenesis and cognitive 
decline.

Aβ is produced from the breakdown of APP by secretase 
enzymes. APP is cleaved by secretases through two different 
pathways; the non-amyloidogenic pathway and the amyloido-
genic pathway. The non-amyloidogenic pathway yields soluble 
Amyloid Precursor Protein Alpha (sAPPα) and C-Terminal Frag-
ment Alpha (CTFα) by the action of α-secretase. Later gamma-
secretase acts on CTFα and releases P3 and Amyloid Precur-
sor Protein Intracellular Domain (AICD). The amyloidogenic 
pathway first releases soluble Amyloid Precursor Protein Beta 
(sAPPβ) by the action of β-secretase and then releases Aβ and 
AICD by means of γ-secretase.

According to the report of Alzheimer’s News Today there is 
a rapid increase in the number of patients suffering from AD 
and among them only one in four people with the disease gets 
diagnosed. Globally 44 million people are estimated to be living 
with AD or related dementia. In the United States, around 5.5 
million people of all ages have AD. Among them, approximately 
5.3 million are older than 65 and 200,000 are younger, having 
early-onset AD [1].

Existing pharmacological management of AD

The Food And Drug Administration (FDA) has approved six 
drugs to be used in clinical setups for the treatment of AD which 
include inhibitors of acetylcholinesterase; Donepezil, Rivastig-
mine, Galantamine and tacrine (discontinued) that point to 
stabilize the levels of Acetylcholine (Ach) in the synaptic cleft 
to maintain optimum neurotransmission due to the hypothesis 
that cholinergic abnormalities during the aging process leads 
to the development of AD [2-4], memantine; that blocks the 
N-Methyl-D-Aspartate (NMDA) receptor and the excess of excit-
atory glutamatergic activity and the combination therapy with 
memantine and donepezil. Acetylcholine and NMDA receptors 
are central to the process of memory and learning and in the 
course of AD and their functions and concentrations are criti-
cally compromised. 

Since aforementioned treatment options improve only the 

memory and cognitive functions, without actually slowing 
down the disease progression and effectiveness of these drugs 
may vary from patient to patient [5], there are many factors 
that contribute to the struggle of developing effective treat-
ments for AD. These factors are: failures in clinical studies, gaps 
in understanding about the precise biological processes and 
molecular changes in the brain that cause the disease, and long 
observational time period to investigate the treatment effects. 

Alzheimer’s disease is still not completely curable and also 
effectively lacks a logical understanding of the principal event 
that is triggering the disease. However, a better comprehen-
sion of this deadly disorder and the advancement of successful 
treatments are crucial not only to cure the disease but also to 
prevent or halt the emerging symptoms of the disease. Keep-
ing these points in mind we have here discussed the possible 
therapeutic approaches (Figure 1) that aimed to modify AD pa-
thology.

Figure 1: Conventional and alternative approaches againast 
Alzheimer’s diseases. 

Linking oxidative stress with AD

With decades of emerging research, it is suggested that neu-
rological tissues of AD patients are subjected to oxidative stress 
during disease progression. Damages such as protein oxidation, 
glycoxidation and DNA oxidation are closely associated with 
the development of AD [6]. Therefore, oxidative stress refers 
to disproportion among the intracellular production of reactive 
oxygen species and antioxidant defense processes [7-9]. With 
the age, there is a decline in capacity of neurons to compensate 
for reactive oxygen species removal, in such situations a slight 
cellular stress can results in irreversible injury that provokes the 
pathogenesis of neurodegenerative disorders [10,11].

The main manifestations of oxidative stress that contrib-
utes to damage in AD includes high levels of protein, lipid and 
advanced DNA oxidation, end products of glycoxidation, de-
position of toxic substances for example alcohols, peroxides, 
cholestones, aldehydes, ketones, free carbonyls and oxidative 
modulations in nuclear and mitochondrial DNA [12]. The afore-
mentioned elevated oxidative modifications were also mea-
sured in Cerebrospinal Fluid (CSF), urine and blood in addition 
to brain of AD patients [12,13].
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A measurable decrease in brain and plasma antioxidants 
defense mechanisms correlates with age-related memory im-
pairments. Glutathione (GSH) is counted as one of the impor-
tant aspect of antioxidant defense system which controls the 
endogenous redox potential in cells [14]. It works by donating 
electrons to Reactive Oxygen Species (ROS) in order to scavenge 
them. With increasing age, intracellular concentration of GSH 
decreases in hippocampal regions of mammalian brain [15,16] 
that exceeds the ROS production from that of removal thus gen-
erates oxidative stress. Therefore, the cause of oxidative stress 
in AD is due to the imbalance between the radical detoxifying 
enzymes.

Oxidative stress is thought to occur during early stages of AD, 
which confirms its role in relation with Aβ presence [17]. Ad-
ditionally, higher levels of Aβ1-40 and Aβ1-42 have been found 
in AD cortical and hippocampal regions, which are associated 
with the elevated levels of oxidative products of lipids, proteins 
and nucleic acids [18]. In comparison, relatively low levels of 
oxidative stress markers are reported in the brain regions with 
low levels of Aβ such as cerebellum [19-21]. Redox proteomics 
identified the oxidized proteins in early state of the disease and 
confirmed the oxidation of lipids and proteins in brain niches 
which have Aβ abundance [22]. It is hypothesized that LDL Re-
ceptor-Related Protein 1 (LRP1) protein is oxidized by the Aβ, 
which results in the accumulation of the neurotoxic Aβ peptide 
in the brain. LRP1, being the multifunctional protein is respon-
sible for the Aβ efflux from the brain to the blood, beyond the 
blood brain barrier [23,24]. In AD, Aβ decreases the LRP1 ac-
tivity by oxidation, [25] thus disrupting its own clearance [26]. 
Such alteration in the clearance of Aβ leads to an accumulation 
of Aβ in the brain, which aids in the pathogenesis of AD [27].

Hyperphosphorylated tau is more resistant to proteolytic 
degradation, which is counted as a major factor in the neurofi-
brillary degeneration in AD pathology [28,29]. Tau aggregation 
in fact is an adaptive change taken by neurons to respond to 
oxidative stress [30-33]. Modifications in Protein tau confor-
mation can also be induced by the 4-HNE (a lipid peroxidation 
product), which also backs the oxidative stress involvement in 
disease progression by advancing the formation of neurofibril-
lary tangles [34].

Antioxidant therapies

One of the promising therapeutic strategies for AD is anti-
oxidants. The disrupted oxidant/antioxidant balance in AD is 
convinced by evidence and has lead us to the supposition that 
compounds that have potential to scavenge free radicals or can 
boost oxidative stress defense mechanisms might be utilized as 
a therapeutic target for AD. Therefore, several antioxidant mol-
ecules have been tested for their improved cognitive actions in 
clinical studies [35]. Despite successful results of compounds on 
Aβ pathology or cellular effects in preclinical studies, still the 
considerable proof of therapeutic potential in humans is miss-
ing.

Vitamins and carotene

α-Tocopherol (Vitamin E) is among the key lipid soluble anti-
oxidant, that inhibits the membrane lipid oxidation in vitro and 
the growth of oxidative metabolites induced by Aβ peptide neu-
rotoxicity [36,37]. Array of genes that have direct or indirect link 
with Aβ clearance are also affected by vitamin E [38]. Vitamin 
E in therapeutic levels may cross the Blood Brain Barrier (BBB) 
in the Central Nervous System (CNS) where it has the ability to 

slow the lipid peroxidation processes [39]. Furthermore, it has 
been reported through studies done on >4000 individuals, that 
the levels of memory impairment are directly consistent with 
the circulating levels of vitamin E, however no such correlations 
have been found with vitamin A, C, selenium and β-carotene 
[40]. Several studies support the role of long term supplemen-
tation of vitamin E and C with the improvement of cognitive 
functions and prevent oxidative damage to brain [41].

So far, protection offered by vitamin E in AD patient is still 
controversial. Despite the available data that vitamin E reduces 
the plaque burden and lipid peroxidation and potentiates the 
proteolytic degradation of intracellular and extracellular Aβ [42]. 
Study conducted in 2009 reported that vitamin E was unable in 
reducing the plasma levels of oxidative stress in half of the AD 
patients [43]. Brewer in 2010 proposes the theory behind the 
ineffectiveness if vitamin E in three main points, in spite of the 
fact that oxidative stress is triggering the symptoms. Primarily, 
accumulation of the oxyradical on to the other lipid, instead of 
oxidized conjugated lipid, due to the unbalanced monotherapy 
of vitamin E which will be the cause of membrane damage. 
Therefore, water soluble electron acceptors such as vitamin C, 
must be included to support vitamin E in systemic removal of 
ROS. Next, the inappropriate dosage timing of vitamin E might 
be responsible for the failure of therapy. In the patients with 
mild cognitive impairment or clinical AD, the synaptic loss and 
formation of neurofibrillary tangles are irreversible pathological 
alterations. Treating with vitamin E at this stage would not be 
beneficial in improving the cognition. Lastly, high-dosage vita-
min E is reported to raise mortality rate. Therefore, individual-
ized therapy of vitamin E should be considered, to attain a less 
oxidized redox amount in plasma, as a non-standard dose may 
be counterproductive [44].

Vitamin B12 in addition to vitamin E and C may also have 
some part in the AD treatment [45]. Research studies showed 
the low levels of vitamin B12 and high serum folate in plasma of 
cognitive impairment patients [46]. Many evidences proved the 
elevation of choline acetyltransferase in cholinergic neurons 
and restoration of cognitive functions in AD individuals after 
supplementation with vitamin B12 [47]. Hence, it is concluded 
that vitamin B12 can also serve in multiple antioxidant thera-
peutic strategies.

Carotenoid is a lipid soluble antioxidant which may hin-
ders lipid peroxidation and improves oxidative status [48]. 
β-Carotene is one of the most familiar and studied carotenoid 
which acts as a potent antioxidant that can slake singled oxygen 
instantly [49].

Antioxidant enzymes

Enzymatic antioxidant systems and cellular molecules are 
endogenous defense mechanisms that protects against the 
deleterious effects of free radicals. The three primary enzymes 
that are responsible for the direct elimination of active oxygen 
species (superoxide radical and H2O2) are Superoxide Dismutase 
(SOD), catalase and glutathione peroxidase. Additionally, the 
secondary enzymes like glutathione reductase, systolic GST and 
glucose-6-phosphate dehydrogenase that functions to reduce 
peroxide levels and maintain a balanced supply of metabolic in-
termediates such as GSH and NADPH for optimal working of the 
primary oxidant enzymes that are stated above [50,51].

The balanced supply of GSH is most significant component 
that directly scavenges ROS and plays a major role in metabo-
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lism of xenobiotics. GSH is exhausted due the increase exposure 
of xenobiotics in the neutralization process and therefore its ef-
ficiency is compromised to serve as an antioxidant. Moreover, 
GSH is also significant in preserving α-tocopherol and ascor-
bate in their reduced form so they may work as antioxidants to 
quench free radicals [52-54].

Mitochondria-targeted antioxidants (MTAs)

Dysfunctioning of mitochondria and compromised energetic 
metabolism are two key features of AD pathology. Mitochon-
dria can be targeted in two ways i.e., by directly targeting mito-
chondria through pharmacological approaches or by indirectly 
hitting the organelle by action on the lifestyle. In this section we 
will discuss the most popular mitochondrial treatments that are 
utilized for AD patients these days [55].

Lipoic acid

Lipoic acid is a naturally occurring cofactor present for the 
mitochondrial enzymes such as α-ketoglutarate dehydrogenase 
and pyruvate dehydrogenase. Lipoic acid has exhibited several 
different properties which aids to interfere with the progression 
and pathogenesis of the AD. For example, lipoic acid strongly 
chelates with redox-active transition metals, consequently halt-
ing the formation of hydroxyl radicals and additionally it also 
scavenges reactive oxygen species, as a result elevating the 
levels of reduced glutathione. Moreover, lipoic acid has poten-
tial to down-regulate the expression levels of redox-sensitive 
proinflammatory proteins which includes inducible nitric ox-
ide synthase and TNF. Also, lipoic acid can quench products of 
lipid peroxidation like acrolein and hydroxynonenal. Research 
suggests that lipoic acid can be given with natural compounds 
for example epigallocatechin from green tea, curcumin etc. to 
additively reduce inflammation, oxidative stress, Aβ levels and 
plaque load, thereby gives a synergistic benefit in the AD treat-
ment [56,57]. Based on evidences, it can be concluded that Li-
poic acid may target the mitochondria which is the most altered 
organelle involved in AD pathology [58].

N-acetyl-cysteine

N-Acetyl-Cysteine (NAC) has shown to be the precursor of 
endogenous antioxidant GSH, a primary molecule for the mito-
chondrial functions maintenance and can also effectively cross-
es the BBB [59,60]. NAC is the source of cysteine, which is the 
rate limiting step in the synthesis of glutathione. NAC serves as 
an antioxidant by boosting GSH levels and interacting directly 
with the free radicals [61]. Studies also proved ability of NAC to 
improve neuronal survival [62]. Preclinical studies showed that 
NAC provide positive effects against Aβ-induced protein, phos-
phorylated tau levels and lipid peroxidation [63]. It also restores 
acetylcholine levels and choline acetyltransferase activity [64]. 
In addition to its GSH modulating and antioxidant properties, 
NAC also protects against toxicity of Aβ through the stimulation 
of anti-apoptotic signaling cascades [65].

Since AD is presented with a prominent neuroinflammation 
element. The main supplier of GSH to neurons and microglia 
are astrocytes. In the course of chronic inflammation and oxi-
dative stress, astrocytes liberate free radicals and toxic inflam-
matory mediators speed up microglia activation and neurode-
generation [66]. In this case, NAC halts the inflammatory factor 
NFκB and inhibits the production of nitric oxide from inflamma-
tory cytokines [67]. Thereby, it is concluded that NAC being a 
multi targeting compound is capable of modulating Alzheimer’s 
pathophysiology.

Coenzyme Q10 

One of the most studied therapeutic strategies in AD is an-
tioxidantsthat directly target mitochondria. With reference to 
the same, Coenzyme Q10 (CoQ10) an antioxidant has been used 
that directly targets mitochondria. Endogenously synthesized 
co-enzyme Q10 (CoQ10, ubiquinone), is a lipophilic antioxidant 
and has ability to significantly restore proteins, lipids and DNA 
oxidation specifically mitochondrial DNA. In most of the cells 
CoQ10 is produced and its function in ATP production is assume 
as beneficial in improving impaired mitochondrial function and 
oxidative damage [68,69]. Also, it conserves the mitochondrial 
membrane potential in the course of oxidative stress and pro-
tects the neuronal cells from the toxic effects of amyloid beta.

CoQ10 is quinone structured and is a part of mitochondrial 
Respiratory Chain Complexes (RCC).In preclinical studies, CoQ10 
has significantly prevented the cognitive decline [70], But due to 
the poor bioavailability in the neurological tissues [71] and elec-
tron transfer dependent functioning, [72] it is unsuccessful in 
human studies. Hence, the Mitoquinone mesylate (MitoQ) was 
optimized to overcome this issue. MitoQ is an antioxidant that 
is synthesized from ubiquinone conjugate with Triphenylphos-
phonium (TPP). To target the molecule of mitochondria, TPP is 
necessary because it helps in crossing the lipid bilayers which 
accumulates on the anionic sides of mitochondrial membranes 
[73].

Mitoquinone mesylate 

Mitoquinone mesylate (MitoQ) behaves as ROS scavenger 
and has been tested in different models of AD. It has success-
fully showed to protect against oxidative damage, prevent RCC 
activity, reduced Aβ peptide levels, astrogliosis and synaptic loss 
to restore cognitive functions [74,75]. To date MitoQ is reported 
to be tested in small scale clinical trials to investigate its poten-
tial effects in cerebrovascular blood flow in AD [76]. Likewise, to 
MitoQ, some additional antioxidant compounds such as SkQ1, 
astaxanthin and MitoAPO also positively affect the mitochondri-
al functions and could be a lead in AD treatment [77-79]. These 
studies have provided us with the considerable confidence for 
the therapeutic effectiveness of future therapies that targets 
mitochondrial disruptions and oxidative stress in AD.

Dietary supplements

Plant compounds such as phenolic acids, flavonoids, alka-
loids, carotene, terpenoids etc. are among the most important 
classes of antioxidants that are exogenous and are a part of hu-
man diet. Therefore, it is supposed that antioxidants from natu-
ral extracts are an important source in prevention and protec-
tion against AD. 

One of the studies determined the regular ingestion of an-
tioxidant polyphenols from lemons and apple concentrate and 
also green tea extract for eight months and presented that they 
might decrease the homocystein plasmatic concentrations in 
AD patients, especially in the moderate stage [80].

Several dietary supplements have been displayed to pro-
vide treatment for AD like omega-3 polyunsaturated fatty acid, 
[6] curry spice curcumin and caffeine. Caffeine has strong an-
tioxidant properties and also demonstrated to decrease brain 
Aβ levels in models of early-onset familial AD [81]. Substantial 
preclinical data indicates that curry spice curcumin have potent 
antioxidant, anti-inflammatory and antiamyloid beta pathology 
activities in AD. Since this compound inhibits enzymes cyclooxy-
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genase 2 and lipoxygenase that are in charge of synthesizing 
proinflammatory leukotrienes, thromboxanes and prostaglan-
dins [82]. Even so, the data regarding the bioavailablity, toler-
ability and safety of curcumin in elderly population is still miss-
ing [83,84]. Additionally, other management options comprise 
of calorie restriction, environmental enriched exercise and life 
style modifications have displayed elevated antioxidants in less-
ening AD neuropathophysiology [85].

Traditional herbal antioxidants

Traditional herbal antioxidants also display potential for the 
treatment of AD. Scientists reported the three main alkaloids 
in berberine, Coptidis Rhizoma-groenlandicine and palmatine 
that successfully restore cognitive functions in AD through 
both Aβ and choline esterase pathway and also by inhibiting 
ROS [86]. Moreover, silibinin (silybin), is a flavonoid which was 
derived from the herb milk thistle (Silybum marianum), have 
also exhibited antioxidant effects. Silibinin can be potential 
anti-Alzheimer therapeutic agent as it prevents oxidative dam-
age and memory impairment induced by Aβ [87]. In addition, 
Ginkgo biloba is a naturally occurring plant that encompasses 
a variety of compounds like flavonoids and terpenoids which 
have an ability of quenching free radicals. It is evident from the 
research studies that Ginkgo biloba can inhibit Aβ aggregation 
and can reduce amyloid precursor protein in vitro. However, 
there are many conflicts on the effects of Ginkgo biloba that re-
ports it has no potential to alter the amyloid precursor proteins 
or senile plaques. Several different studies reported the serious 
side effects that are associated with the use of commercially 
available ginkgo that counts coma, seizures and bleeding [88]. 
A systemic review confirmed the moderate neuroprotective ef-
fects of Ginkgo biloba, but their clinical application is hard to 
evaluate [89].

A study reported the antioxidant effects of methanol ex-
tracts of cork aok (Quercus suber) in vitro studies. The most sig-
nificant antioxidant effects were achieved from the methanol 
leaf extract of the plant which contains tannins, phenols and 
flavonoids [90]. The methanolic extract of Atriplex lacianata L. 
enriched in phenols and flavonoids also possesses significant 
antioxidant activities [91]. Antioxidant activity of the extracts of 
Acanthopanax henryi leaves which contains caffeoyl quinic acid 
derivatives and flavonoids were examined by free radical and 
superoxide anion scavenging [92].

Other antioxidants

Melatonin

Another strong free-radical scavenger and broad spectrum 
antioxidant is melatonin. In AD, clinical studies with empirical 
treatment with melatonin have displayed improved neuropsy-
chiatric and cognitive performance [93].

Melatonin is one of the mammalian hormones mainly syn-
thesized in the pineal gland. It scavenges nitrogen and oxygen 
based reactants that are produced in mitochondria by elevating 
the expression and activity of glutathione peroxidase, NO syn-
thetase and superoxide dismutase [94]. Ultimately, melatonin 
contributesin reducing oxidative damage to cells [95]. Studies 
conducted currently have exhibit that antioxidant melatonin 
have ability to inhibit Aβ-induced neurotoxicity, [96] diminish 
tau hyperphosphorylation [97-102] thereby improving learning 
and memory deficits in in vitro and in vivo models of AD [102].
Melatonin have also potential to halt the NADPH oxidase phos-
phorylation through P13K/Akt-dependent signaling cascade in 

microglia that were exposed to Aβ1-42 in in vitro studies [96]. 
Summarizing all evidences, the above information supports the 
antioxidant potential of melatonin to be utilized as therapeutic 
strategy in AD but further clinical data is required to confirm its 
clinical value for future use.

Monoamine oxidase-B inhibitor

Inhibitors of monoamine oxidase are suggested to be valu-
able for AD treatment. Monoamine Oxidase (MAO) is an en-
zyme that catalyzes the oxidative deamination of several xe-
nobiotic and biogenic amines [103]. MAO is present as two 
separate enzymatic isoforms i.e. MAO-A and MAO-B, which is 
specific for their substrate and inhibitor aspects. Predominantly 
catecholaminergic neurons contain MAO-A, on the other hand 
MAO-B is found in serotonergic glia and neurons [104]. Selec-
tive MAO-A inhibitors are employed for the treatment of anxi-
ety and depression [105]. While MAO-B inhibitors have shown 
to be effective in disorders such as Parkinson’s and Alzheimer’s 
disease [106].

AD patients are commonly presented with depressive signs 
and can be risk factor for disease development [107]. Enhance 
astrogliosis increases MAO-B levels in the brains of AD patients 
have also been reported [108]. It is suggested that for the treat-
ment of AD, dual inhibition of both isoforms should be consid-
ered rather than MAO-B alone [109]. Selegiline which is familiar 
as L-deprinyl is a selective inhibitor of MAO-B with potential 
antioxidant properties and is promising to be used for the treat-
ment of neurodegenerative disorders [110]. It has the ability to 
protect the vascular endothelium from the noxious effects of 
Aβ peptide and also enhance the functions of nigral neurons 
and their survival by halting oxidative deamination [111,112]. 
In 1997, a study reported that in moderately impaired AD pa-
tients, seleginine treatment significantly reduced the neuronal 
damage and slowed the progression of disease [111]. These 
evidences suggest that the selegeline may delay the progres-
sion of clinically important functional worsening in Alzheimer’s 
patients. It also improves the cognition, mood, behavior and 
functional ability. But, clinical studies conducted during 2002 
declared the lack of therapeutic evidence to be recommended 
as a treatment for Alzheimer’s disease.

Due to the presence of multiple etiologies of AD, single tar-
get strategies become difficult to show good therapeutic effect. 
For that reason, Multi-Target-Direct Ligand (MTDL) displays an 
effective treatment strategy of AD [113,114]. Combined ther-
apies of AD with anti-AChE and anti-MAO have already been 
reported. Such as, the derivative N-pyrimidine-4-acetylaniline 
which possesses AChE and reversible MAO-A inhibitor activity  
in vitro studies has been displayed multi targeted agents against 
AD [115]. Moving forward, in the development of monoamine 
oxidase inhibitors, compound JMC49 is also noticeable MAO-B 
inhibitor and has shown to be a candidate for AD treatment 
[116,117].

Hormones

Approximately two-thirds in 5.4 million of Americans with 
Alzheimer’s disease are women [118]. Studies done on in vit-
ro models supports the neuroprotective actions of estrogen 
against several cellular insults [119-124] and also gives protec-
tion from toxicity of amyloid β [125,126]. However, postmortem 
investigations uncovered that women with Alzheimer’s disease 
showed reduced levels of brain estrogen [127].

Hormone Replacement Therapy (HRT) has shown to lower 



MedDocs eBooks

6Alzheimer’s Disease & Treatment

the risk for dementia [128-132]. Nevertheless, the outcomes 
are controversial after the findings from the Women’s Health 
Initiative Memory Study (WHIMS), which confers that HRT in-
crease the overall risk of dementia [133,134]. Many of these 
gaps in our knowledge are recently being highlighted by expert 
panel from a number of Alzheimer’s disease organizations. 
These comprise the prompt need to recognize how estrogen ac-
tually influences risk at the molecular level [135,136]. Estrogen 
has exhibited its antioxidant effects to protect neurons from the 
Aβ toxicity [112]. Besides its neuroprotective effects, it does not 
restore the cognition in AD patients [137]. But recommending 
estrogen as an antioxidant at present to reduce the AD risk has 
no evidences. 

In spite of the current knowledge, there is much doubt re-
garding the therapeutic success with antioxidant therapy due to 
certain limitations. Several novel antioxidants exhibited their ef-
fects in animal studies but were relatively less effective in clini-
cal trials. The one of the failure in human trials was because of 
inability to cross BBB. Hence, in future studies, it is necessary to 
investigate the potential of antioxidant to reduce or slow down 
the risk of AD progression. Furthermore, combination therapy 
with antioxidants should be focused rather than the single ther-
apy, in order to assist redox cycling and also expand bioavail-
ability in all cellular compartments.

The physiological and therapeutic role of secretases in AD

The generation of Aβ peptide is the initial step of the amy-
loid cascade and is generally considered as the main focus of 
AD pathology. Chemical molecules that can alter the activity of 
secretases responsible for the production of kind of Aβ peptide 
are likely to have advantageous effects as they can inhibit Aβ 
oligomerization and fibrils formation, thereafter improve cog-
nitive deficit associated with the disease pathology. In view of 
potential anti-AD pharmacological interventions, secretases 
are divided into two distinct classes based on the cleavage 
sites present on APP. On one side are the harmful β-, γ-, δ-, 
and η- secretases that directly or indirectly contribute towards 
the formation of Aβ and for which inhibitors are needed [138], 
while on the other side is the α-secretase activation of which 
is required for beneficial outcomes [139]. Excitingly, activity of 
α-secretase not only precludes the formation of Aβ peptide but 
also involves the production of secreted fragment sAPPα which 
functions as neurotrophic, neuroprotective, memory improving 
and neurogenesis stimulating factor [140-143]. 

α-Secretase

The non-amyloidogenic processing of APP occurs between 
the Lys 16 and Leu 17 amino acid residues of Aβ peptide that 
lies in the extracellular space [144-146] by zinc metalloprotei-
nases [147]. Experiments conducted on the neuronal and non-
neuronal cells revealed that proteinases of the ADAM (A Dis-
integrin and Metalloproteinase) family possess the activity of 
α-secretase [148-150]. The most commonly studied α-secretases 
are ADAM9, ADAM10 and ADAM17 [149-151]. In human brain 
the expression of ADAM10 is synchronized with the expression 
of APP, while ADAM17 is less likely to express along with APP 
[152]. Another member of ADAM family, ADAM19 was pro-
posed as α-secretase, but in vitro this protease does not cleave 
APP derived peptide suggesting that it is indirectly possessing 
the activity of α-secretases [153]. Concerning the identifica-
tion of α-secretase studies concluded that ADAM10, and not 
ADAM9 or ADAM17 is the constitutive α-secretase in primary 
neurons and in the cells affected in AD [154,155].

Activation of α-secretase in AD

The activity of α-secretase is regulated by many cellular pro-
teins and intracellular signaling pathways which control its ac-
tivity at different levels. ADAM10 is regulated at the stage of 
transcription, translation, post translation, protein trafficking 
and also by regulating cell surface receptors, membrane fluid-
ity and ADAM10-controlling proteins [156]. Various compounds 
have been presented to activate transcription of ADAM10. Acit-
retin, which is clinically used to treat psoriasis, is found to induce 
transcription of ADAM10 gene by activating all the receptors of 
trans-Retinoic Acid (RA) [157]. In the same manner, compound 
from red wine, resveratrol has been reported to activate nicoti-
namide adenine dinucleotide-dependent deacetylase Sirtuin-1 
(SIRT1), which intensifies the deacetylation of β receptor of 
RA, ultimately switching on the transcription of ADAM10 gene 
[158]. Some natural compounds including a cryptotanshinone 
from Radix Salvia miltiorrhiza [159] and a marine-derived natu-
ral compound bryostatin-1 have also been shown to increase 
the protein levels of ADAM10 [160]. Furthermore, α-secretase 
activity is also affected by membrane fluidity. Less cholesterol 
in the membrane enhances membrane fluidity which disturbs 
APP internalization [161] thus increasing the processing of APP 
at the cell surface by α-secretase [162]. Therefore, lipid lower-
ing drugs, for instance HMG-CoA reductase inhibitors were sup-
posed to increase the processing of APP by α-secretase [163]. 
Similarly, cholesterol-lowering drug lovastatin has been shown 
to activate activity thereby decreasing the amount of Aβ pep-
tide [161]. Other lipid-lowering agents such as atorvastatin and 
simvastatin have also been tested to alter α-secretase activity, 
but they were found ineffective [164,165]. So far, only etazolate, 
which is an anxiolytic drug and allosterically activate GABAA re-
ceptor [166], has reached to clinical research as a potential can-
didate for α-secretase activator. 

β-Secretase

The function of β-secretase is executed by Beta-Site Amyloid 
Precursor Protein Cleaving Enzyme 1 (BACE1) that cleaves APP 
to produce sAPPβ and CTF99. BACE1 also cleaves APP at anoth-
er C-terminal site generating CTF89 fragment and subsequently 
release Aβ11-40 after cleavage by γ-secretase. Another protein, 
BACE2, also possesses β-secretase activity [167], but it is typi-
cally limited to glial cells and its expression is less in the brain 
[168]. It is also not related to the pathogenesis of AD. The amy-
loid pathology genetic alteration of BACE1 entirely precludes 
Aβ pathology in AD mouse model expressing Swedish mutation 
APP670/671 and PSEN1 gene [168,169] or in Tg2576 AD mouse 
[170]. Mice lacking BACE1 gene do not have β-secretase func-
tion and amyloid plaques production in neurons [138,171,172]. 
BACE1 expression and function are also elevated in AD brains 
[173,174]. These studies suggest that BACE1 acts as a function-
ally important β-secretase expressed in the brain that is respon-
sible for the development of AD pathogenesis. 

Inhibition of β-secretase in AD

BACE1 protein is critical for the processing of APP and its reg-
ulation is important in maintaining the levels of Aβ. Therefore, 
drugs based on targeting BACE1 gene expression and control 
are of major concern in the field of drug development against 
AD. BACE1 gene can be regulated at various levels. To transcrip-
tionally control BACE1 expression, several transcription factors 
have been recognized to regulate the activity of BACE1 pro-
moter. Post-transcriptionally BACE1 mRNA is modified by alter-
native splicing, miRNAs at the 3′UTR and uAUGs at the 5′UTR. 
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Regulation of BACE1 protein also occurs by post-translational 
modifications that affects protein maturation, stability, traffick-
ing and its enzymatic activity [175].

The discovery and development of BACE1 inhibitors is chal-
lenging due to its large substrate binding site, BBB penetration 
and selectivity [176]. The large size of the BACE1 substrate bind-
ing site creates obstruction in the designing of potent inhibitors. 
The compounds with smaller molecular size cannot fix properly 
into the binding site to elicit better response while those that 
fit the binding site mostly have compromised drug-like activ-
ity [177]. Furthermore, the catalytic site of BACE1 possesses 
high similarity with other aspartic proteases [178]. Therefore, 
the BACE1 inhibitor can possibly inhibit other physiological as-
partic proteases such as BACE2 and cathepsins causing issues 
related to selectivity of the inhibitor [179]. Moreover, it is im-
portant for an inhibitor to penetrate the BBB in order to act 
at the site where Aβ is formed, that is brain [180]. Regardless 
of major constraints in developing BACE1 inhibitors, BACE1 is 
generally considered the finest target to reduce Aβ burden and 
development of potent BACE1 inhibitors holds a key position in 
academia and industry [179]. 

Since the pharmaceutical industry lack any FDA approved 
BACE1 inhibitor, the use of ‘fragment-based drug discovery’ for 
the development of BACE1 inhibitors has been shown to be suc-
cessful which is evident by the clinical research of some of these 
inhibitors [179]. The first BACE1 inhibitor reached clinical trial is 
LY2886721 that failed phase II clinical trial due to its significant 
hepatotoxicity. Likewise, clinical trials RG-7129, BI-1181181, 
AZD-3839 and LY-2811376 were also ended due to the side ef-
fects of these drugs. Some other drug candidates, JNJ-54861911, 
E2609, AZD-3293 and MK8931 have successfully finished phase 
I clinical trial and are under further consideration [179].

γ-Secretase

The known γ-secretase is an enzyme that cleaves C-terminal 
fragment of APP followed by α- or β-secretase cleavage to re-
lease the cytoplasmic domain of APP [181]. Unlike the type-I 
transmembrane monomeric α- and β-secretases, γ-secretase 
complex is a heterotetramer composed of Presenilin (PS) 1 or 
2, nicastrin, Anterior Pharynx Defective 1 (APH1) and Presenilin 
Enhancer 2 (PEN2) [182]. The catalytic activity of the gamma 
secretase complex lies in PSs subunit [183].This catalytic site 
consists of two aspartate residues (at positions 257 and 385 
for PS1, 263 and 366 for PS2), embedded in transmembrane 
domains 6 and 7 in GxGD motifs. Notably, the endoproteolytic 
cleavage by presenilinase within the E9 domain of the third 
intracellular loop of PSs to generate NTF and CTF fragments is 
necessary to achieve an active γ-secretase [184].

Inhibition of γ-secretase in AD

Gamma secretase is recognized as one of the most poten-
tial AD therapeutic target because of its role in the last stage of 
amyloid beta formation and its function in defining the type of 
C-terminal peptides. Therefore, discovery of gamma secretase 
inhibitors has gained a lot of expectations [185].

Besides the role of gamma complex in APP cleavage, many 
other proteins including the cytoskeletal and signaling mol-
ecules such as Notch receptors, E cadherin, ephrin B2, CD44, 
ERBB4, and others are gamma secretase substrates [186]. While 
inhibition of gamma secretase is evidently favorable for the 
treatment of AD, simultaneous inhibition of cleavage of other 
gamma secretase substrates may lead to unfavorable conse-

quences. Moreover, the developed gamma secretase inhibitors 
which include semagacestat (LY450139) and avagacestat (BMS-
708163) were withdrawn from the clinical trials due to their un-
desirable side effects caused by off-target inhibition. The reason 
for the failure of semagacestat phase III clinical trials is its in-
competence to improve cognitive deficits and its severe adverse 
effects 188. Failure of semagacestat leads to the development 
of avagacestat which does not affect Notch [187], however it 
is rejected from phase II trials because of its serious adverse 
effects at high doses [188]. As a result, an alternative approach 
to look for compounds that are capable of altering the activity 
of gamma secretase rather than inhibiting it entirely has been 
underlined as a better way to develop AD therapeutics [185].

Modulation of γ-secretase 

The first generation of Gamma Secretase Modulators 
(GSMs) was a subclass of Nonsteroidal Anti-Inflammatory Drugs 
(NSAIDs), documented to lower the amount of larger toxic Aβ42 
whereas increasing the shorter non-amyloidogenic Aβ forms, 
ultimately increasing the Aβ38:Aβ42 ratio [189]. Examples of 
these modulators include ibuprofen, flurbiprofen, indometha-
cin, sulindac sulfide, carprofen and tarenflurbil which functions 
as gamma secretase allosteric inhibitors to bring conformation-
al change in the enzyme so that it specifically inhibits formation 
of Aβ42 peptide [190]. In the light of these research findings, 
other NSAID-based GSMs, CHF5074 and EVP-0015962 were 
also developed less potency, poor drug-like properties and lim-
ited BBB penetration these compounds did not reach the goal 
of drug development against AD [191].

An arylimidazole analog, E2012 has been developed as a non-
NSAID GSM prototype [192]. E2012 was the first non-NSAID GSM 
to be examined clinically with potent inhibitory activity against 
amyloid beta42 in in vitro assays at nanomolar concentrations. 
But the compound and its derivative E2212 not showed good 
CNS drug-like effects [185]. Therefore, several other analogs of 
E2012 have been constructed to improve potency and to over-
come the problem of drug unlikeness. Although compounds 
of this class exhibit inadequate drug-like effect in the CNS, it is 
important to know that the compounds developed using the 
pyrimidomorpholine scaffold have better drug-like effects. But 
development of these compounds with good potent activity 
stays challenging [185]. Later on, discovery of pyridopyrazine 
1,6-dione–based GSMs confer better potency and considerable 
drug-like effects in the CNS. Notably ether-liked fluorine deriva-
tive of pyridopyrazine presented good drug pharmacokinetics 
as well as more potent activity in vivo with EC50 of 6nM [193]. 
Similarly, alkane-linked compounds of the same class have also 
been constructed which include benzofuran, tetrahydrofuran 
and indole analogs [190,194]. 

Additionally, non-arylimidazole based compounds were also 
developed among which oxazole based compounds did not 
exhibit potent and drug-like effects. However, cyanindole com-
pounds displayed good initial safety and potent activity in vivo 
but issues related to the effectiveness as a CNS drug remain a 
question to be solved [195].

As discussed earlier, natural products provide promising con-
stituents for the drug discovery and development, the same will 
be applicable to gamma secretase modulators. Triterpene gly-
cosides from Cimicifuga racemose, black cohosh were the first 
to be documented as gamma secretase modulator. However, 
the first active triterpene glycoside showed activity at nanomo-
lar concentrations but it did not possess good drug-like effects 
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in the CNS. This issue demanded the discovery of more efficient 
derivatives [196]. 

Studies also reported the activity of the aqueous extract of 
the Pterocarpus erinaceus bark in significantly decreasing Aβ42 
in vitro levels without cytotoxic effects at effective concentra-
tion [212]. But identification of bioactive phytochemicals re-
sponsible for decreasing amyloid beta load is still needed. In 
addition to compounds derived from plant sources, some acidic 
steroids present endogenously have also represented gamma 
secretase modulating activities without affecting the Notch sig-
naling [197]. 

It is therefore summarized that development of compounds 
possessing good drug-like effect in the CNS and excellent poten-
cy is highly challenging in the field of drug development [185].

Aβ immunotherapy

There are three possible mechanisms of action of Aβ target-
ed antibodies (Figure 2). First is the direct action of antibody 
on Aβ protofibrils, fibrils, oligomers or plaques, where antibody 
disrupts the stability of Aβ species. Second is Fragment, Crystal-
lizable (FC) receptor based phagocytosis by microglial cells and 
the last is peripheral sink mechanism, where, antibody binds 
to Aβ present in the plasma, therefore resulting in efflux of Aβ 
from brain to plasma [198].

Figure 2: Anti-Aβ antibody targeted immunotherapy, Direct 
destabilization of Aβ (A). Fc receptor based phagocytosis (B). Pe-
ripheral Sink mechanism (C).

The first anti amyloid immune based drug candidate was AN-
1792 that aimed to provoke immune response against Aβ and 
was a pre-aggregated form of Aβ conjugated to QS21 adjuvant. 
Despite clearing Aβ deposits, this drug was not clinically effec-
tive and did not improve cognitive deficit [199]. In addition, AN-
1792 induced an immune response in almost 6% of the patients 
with severe meningoencephalitis-like brain inflammation [199]. 
Some other safer Aβ antigens and adjuvants were developed 
later, but they also did not get success to provide clinical ben-
efits. The only drug that is still in the development pipeline is 
CAD106. Several passive monoclonal antibodies against Aβ have 
also found to be clinically unsuccessful. Some of the Aβ target-
ed antibodies (Table 1) including crenezumab, gantenerumab, 
solanezumab and aducanumab which are in phase III clinical 
research for early AD, asymptomatic patients and prodromal 
familial AD [198] are discussed here.

Table 1: Anti-Aβ antibodies in phase III clinical research

Drug Candidate Mechanism of Action Disease Stage

Crenezumab mAb Early AD

Gantenerumab mAb Early AD

Aducanumab mAb Prodromal

Solanezumab mAb Prodromal

BAN2401 mAb Prodromal

Crenezumab

Crenezumab from Genentech and Hoffman-La Roche is in 
phase III clinical trial for early stage AD patients. It targets oligo-
meric and 16-mer fibrillary Aβ types and binds to residues 13 to 
16 of oligomeric Aβ forms 44. It also supports Aβ disaggregation 
by preventing its aggregation [200].

Gantenerumab

Gantenerumab from Hoffman-La Roche and Genentech is 
developed to treat early stage AD patients by clearing Aβ and 
is undergoing phase III trials. The affinity of gantenerumab is 
more against Aβ oligomers (0.6nM) and fibrils (1.2nM) than Aβ 
monomers (17nM) [201].

Aducanumab

Aducanumab developed and licensed by Neurimmune and 
Biogen is in the investigational process for treating prodromal 
AD. Aducanumab binds to Aβ insoluble fibrils and its soluble ag-
gregates and has >10,000-fold increased selectivity for aggre-
gated Aβ forms than the monomers [202].

Solanezumab

Solanezumab is being investigated for patients at high risk 
of developing AD. Experiments conducted on transgenic mice 
and human subjects provide data that solanezumab targets Aβ 
plaques and soluble monomeric form of Aβ [203]. Solanezumab 
is one of the few Aβ targeted antibodies that have been re-
ported to restore cognitive impairment in some AD transgenic 
mouse models [204] but not in all [205].

BAN2401

BAN2401 developed by Biogen and Eisai is undergoing ex-
perimental testing against prodromal AD. It decreases the bur-
den of Aβ protofibrils in brain and CSF of AD transgenic mice ar-
ticulating the human Arctic and Swedish APP mutations [206].

Targeting tau kinases in AD pathology 

Tau is a protein encoded by gene located on chromosome 17 
called mapt gene [207]. This protein referred as IDP or intrin-
sically dis-ordered protein because of lacking in stable natural 
structure and show stretchable conformations. These confor-
mations allow the tau protein to interact with other protein as 
well as itself. Tau protein binds with microtubules and attains a 
stable structure [208]. It can also gain of toxic function by phos-
phorylation of tau protein and fragment removal by truncation 
processes [209]. 

Tau hypothesis for AD describe the mechanisms through 
which the Neurofibrillary Tangles (NFTs) of tau protein are 
formed. NFTs comprises of hyperphosphorylated form of tau 
protein are the pathological hallmarks of AD [210]. It is ob-
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served that hyperphosphorylation of tau protein is directly 
associated with the disruption of microtubules assembly and 
already assembled microtubules function [211-214]. The term 
tau-pathology used when phosphorylated tau protein start hy-
perphosphorylate and aggregates intracellularly in neuron. Hy-
perphosphorylated tau redistribute in the neuron from axon to 
dendritic region in filamentous form [215]. Tau oligomers serve 
as substrate for the tau-tau binding resulted in tau aggregation 
[216]. Physiologically the lysosomes and vacuoles are principal 
agents for elimination of cellular waste. When cellular elimina-
tion cycle disrupted the insoluble waste tend to accumulate into 
the cellular cytoplasm. Truncated tau protein further trigger for 
the aggregation of tau protein leading the Paired Helical Fila-
ments (PHF) core and then neurofibrillary tangles or NFTs [217]. 
As the pathology progress these tangles become insoluble with 
the increase in complexity and abundance of hyperphosphory-
lated tau and disrupt the function of neuron by disrupting the 
axonal transport which ultimately leads towards neuronal death 
[215]. Therefore, tau pathology particularly the hyperphospho-
rylation of tau protein considered the potential therapeutic tar-
get for modulation of the AD. 

Lists of strategies are adapted to subsidize the pathogenesis 
of tau protein in AD model. These strategies include the inhibit-
ing mechanism for hyperphosphorylation of the tau protein, in-
hibition and clearance of the tau protein aggregation, stabilizing 
the microtubules and also immunotherapy against tau protein 
[214].

Inhibitory mechanism of tau protein hyperphosphorylation 
targets the kinase enzymes which are involved in the tau hyper-
phosphorylation [218]. Different kinases such as GSK-3β, Fyn ki-
nase, CDK5 and some stimuli associated kinases (JNK and p38) 
and mitogen activating kinases (ERK1 and ERK2) are involved 
in hyperphosphorylation of tau protein. Previous studies show 
higher concentration level of these kinases in the brain of AD 
patients [219]. 

Glycogen synthase kinase-3 (GSK3)

GSK3 is a kinase which phosphorylate at serine-threonine 
position of different proteins and modulates their activity by 
its phosphorylation [220]. It ubiquitously expressed during the 
regulation of many signaling pathways particularly in neurode-
generation. Until now two isoforms of the GSK3 are reported, 
GSK3-α and GSK3-β, while both isoforms are product of two 
different genes located on chromosomes 19 and 3 share 98% 
structure similarity [221,222]. Research studies show abun-
dance of GSK3- β expressions in CNS where its level increase 
with aging [223]. Molecular studies after death on the brain 
of the AD patients supported the hypothesis that GSK3-β also 
pathological cause of AD because of presence of hyperactive 
GSK3- β in the AD patient’s brain [224]. It also contributes in the 
memory consolidation, synaptic plasticity, neurogenesis, long 
term potentiation and inflammation.

Association of GSK-3β with the neuropathological features 
of the AD such as Aβ production, tau phosphorylation, memo-
ry dysfunction, synaptic failure and neurogenesis is apparent. 
Therefore, on the basis of this association GSK3-β considered 
an important therapeutic approach to alleviate pathology of 
the AD. Phosphorylation and dephosphorylation on different 
locations are key processes to regulate the function of GSK3-β. 
Many research studies are conducted for the loss of function of 
GSK3-β on the AD model and provide sufficient insight informa-
tion to use it as therapeutic target [225,226]. 

Instead of high conservation of GSK3- β kinase only few com-
pounds (synthetic and natural) as GSK3-β inhibitors succeeded 
to clinical trial level after successfully testing in pre-clinical trial. 
GSK3-β being a part of many fundamental biological processes 
is main reason for the failure of the clinical trials instead of ini-
tially encouraging results [227,228].

The first drug which reached the clinical trial to reduce the 
tau pathology by targeting inhibition of GSK3-β is known as 
AZD2558 [229]. It reduced tau phosphorylation successfully in 
both (in vivo and in vitro) because of target specificity. Howev-
er, a lot of severe toxicological side effects associated with this 
drug prevent to use it for chronic AD patients’ treatment. An-
other drug named AZD1080, which show promising results for 
reduction of tau hyperphosphorylation in vitro as well as in pre-
clinical studies also withdraw from the clinical trials because of 
severe side effects [229].

Tideglusib being the GSK3-β inhibitor is the only drug to 
reach the clinical trial phase II for treatment of the AD [230,231]. 
This drug is used to reduce tau phosphorylation associated pa-
thology in mild to moderate AD patients in clinical trials. These 
clinical trials provide no promising results regarding significant 
medical or cognitive improvements in AD patients however 
they show good drug tolerability [232].

Lithium chloride is CNS drug approved by FDA for bipolar dis-
orders treatment purpose also has inhibitory effect on GSK3-β 
enzymes. Its activity as GSK3-β inhibitor is weak and unspe-
cific however it shows significant reduction in GSK3-β activity 
at therapeutic dose with no side effects [233]. Clinical studies 
show very promising results to use this drug as therapeutic 
agent against AD. Pilot clinical trials studies with this drug are 
conducted on AD patients show significantly reduction in tau 
hyperphosphorylation (tau pathology) and improvement in the 
impaired cognition in patients with AD [232]. Positive results of 
the Lithium Chloride against AD suggest that it might be poten-
tial therapeutic or disease modifying drug for AD. Further clini-
cal studies with this drug are under the processes. 

ANAVEX 2-73 a GSK3- β inhibitor drug is also under clinical 
trial phase II. Preclinical data of this drug show promising re-
sults to reduce tau hyperphosphorylation related pathology in 
AD patients by GSK3-β inhibitory mechanism [234].

Fyn kinase inhibition

Fyn kinase is one of the important kinase among the other 
nine kinases of the non-receptor tyrosine kinase (SRK) fam-
ily [235,236]. This kinase is involved in the production of Aβ 
plaques and tau phosphorylation of NFTs. Shirazi and wood 
[237] reported the significant immunoreactivity of Fyn kinase 
along with abnormal phosphorylated Tau protein in the AD 
brain compare to the normal brain. On the basis of this many 
researchers are now focusing to find the possible connections 
between the Fyn and AD which lead to the down regulation of 
Aβ on tyrosine kinases. Preclinical data strongly recommend 
that targeting the Fyn kinase might be potential therapeutic ap-
proach for AD. However, Fyn kinase as part of many fundamen-
tal physiological processes to maintain the normal function is 
also a major hindrance because disruption of these physiologi-
cal processes possess some severe off target consequences. Ex-
treme inhibition of Fyn kinase could have serious side effects on 
cognition as well as memory functions. These adverse effects 
could become more severe in AD patients who already have vul-
nerable state of memory and cognition [238].
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Saracantinib is first drug reported to target the Fyn through 
inhibition of specific SRK in AD. In 2014, a clinical trial with sara-
cantinib on AD patients was launched to study the tolerability, 
safety and CNS penetration of the drug [238]. 

Many other tyrosine kinase inhibitors have gone under the 
pre-clinical and clinical trials to check the therapeutic potential 
against AD. Masitinib is one of them tyrosine kinase inhibitor 
with oral availability. Phase II clinical trial with this drug in AD 
patients show promising results regarding cognition and im-
provement in daily living [239].

Beta carboline compounds are reported for the reduction of 
the taupathy in AD. These compounds target the tyrosine ki-
nase called DYRKIA. Over expression of DYRKIA kinase is directly 
associated with taupathy in AD [240]. Harmine is a beta carbo-
line drug which inhibits the DYRKIA function. Preclinical studies 
show a significant reduction in tau hyperphosphorylation upon 
the inhibition of the function of DYRKIA kinase [217]. 

Cyclin dependant kinase 5 

Cyclin Dependant Kinase 5 (CDK5) is unique and important 
kinase enzyme member of the CDKs family. Research studies 
provide sufficient data regarding the CDK5 association with the 
AD pathogenesis. CDK5 is one of the key players in the develop-
ment of CNS, neuronal movement (migration and differentia-
tion), synaptic and memory processes. Hyperactivity of CDK5 is 
direct linked with the hyperphosphorylation of Aβ and tau NFTs. 
This hyperphosphorylation of Aβ and tau protein ultimately 
leads towards the neurodegenerative disorders such as AD. 
Presence of CDK5 phosphorylated tau in the AD brain specifi-
cally at the hyperphosphorylated sites suggesting it as potential 
disease kinase. Hence inhibition of CDK5 could be an important 
target candidate to reduce the tau hyperphosphorylation and 
potential therapeutic approach against AD [241].

Many drugs which target the GSK3-β kinase inhibitors also 
target the CDK5 and reduce its level. These drugs are Hymeniial-
disine [242], 6-bromoindirubin [243] and Manzamine A analog 
95 which inhibit the both kinases [244] and decrease the hyper-
phosphorylation tau protein with enhanced cognition. 

Tamoxifen is a generic drug commonly used for the treat-
ment of breast cancer also show positive results for alleviate 
the tau hyperphosphorylation associated pathology in AD. This 
drug inhibits the CDK5 protein by binding the CDK5/p25 subunit 
and modulates the tau phosphorylation pattern [245].

Mitogen activated protein kinase 

Mitogen Activated Protein Kinase (MAPKs) are serine/threo-
nine kinases which have significant role in regulation and main-
taining the cellular processes such as cell proliferation, cell dif-
ferentiation, survival and apoptosis in response the external 
stimuli [246].

P38 kinase is important MAPK enzyme with association of 
maintaining the regulation of tau phosphorylation. It is hypoth-
esized that this kinase participates in the hyper-phosphoryla-
tion of tau protein under the pathological circumstances [247]. 
It was reported in 1999 by hanslay and team that p38 MAPK 
is closely associated with AD. They observed the hyper activity 
of p38 MAPK in the brain of patients with AD [248]. Research 
studies confirm that hyper activation of p38 MAPK start at early 
stage of pathogenesis in AD [249,250]. Specifically, its associa-
tion with the NFTs pathology in cortex and hippocampus areas 
in brain of AD patients [251]. Association of p38 MAPK with hy-

perphosphorylation of NFTs of the disease indicates that inhi-
bition of the p38 MAPK enzyme might b potential therapeutic 
target to reduce the tau pathology in AD. Therefore, many re-
search groups attempted by direct or indirect p38 MAPK inhibi-
tors to reduce the tau hyperphosphorylation associated pathol-
ogy of AD.

One commercially available drug SB203580 is conventionally 
p38 MAPK inhibitor use for reference tools for biological evalu-
ation. Ginsenoside Rg1 is also used as p38 MAPK inhibitor to 
reduce he tau hyperphosphorylation in Aβ stimulated neurons 
in Ad model [252]. Trolox, an analog of vitamin E which is wa-
ter soluble reported for reduction of tau pathology through the 
inhibitory mechanism of p38 MAPK induced by oxidative stress 
[253].

Proanthocyanidins, a class of natural flavonoid also reported 
for decrease the tau phosphorylation in neuronal cells and en-
hancement of impaired cognition state in AD model. This drug 
inhibits the cascade activation of p38 induced by ER stress stim-
uli [254]. The other serine/threonine kinases family of stress 
induced MAPKs enzymes are a c-Jun N-terminal protein kinases 
[255].

Inhibition and clearance of tau protein aggregation 

Currently, LMTX an important drug which is in clinical trial 
phase III and providing the promising result in clearance of 
NFTs and inhibition of their aggregation in AD patients [256]. 
This drug is derivative of the Methylene blue dye with increase 
bioavailability and tolerability. It works as blocking the tau phos-
phorylation and further evading the tau aggregation. Clinical 
studies showing that it not only prevents the tau protein aggre-
gation also clear the already formed NFTs in AD [257].

Phosphateses also important enzymes which de-phospho-
rylate the tau protein totally reverse function of the kinases. 
Phosphatases 5 (PP5) one of the many phosphatases which 
abundantly present in CNS. Its activity enhanced in the pres-
ence of unsaturated fatty acid or long chain fatty Acyl-CoA. Low 
levels of PP5 indicate the inhibited activity of PP5 on the NFTs 
along with the low level unsaturated fatty acid leading to imbal-
ance between both processes. This imbalance between phos-
phorylation and de-phosphorylation ultimately leads towards 
the tauopathy in AD. On the basis of this PP5 might be potential 
therapeutic target to alleviate the tauopathy [217].

Autophagy 

An extensive amount of data supports that dysregulation of 
autophagy take place in both AD patients and animal models. 
Suzuki found that there were many irregular subcellular vesicles 
and tau proteins accumulated in swollen or dystrophic neuri-
tis in the AD patient brains [258]. In 2005, the Nixon Group 
found that such vesicles accumulated in dystrophic neuritis in 
AD brains were immature autophagic vacuoli by the use of im-
munogold labeling and electron microscopy [259]. Before the 
synaptic and neuronal loss, in hippocampal neurons of AD mice, 
unusual increase of immature Autophagy Vacuole’s (AVs) in axon 
was noticed [260,261]. An abnormal accumulation of AVs has 
also been observed in several other AD animal models including 
the TgCRND8 mice that overexpresses mutant human APP695 
and APPSWE/PS1M146L [262,263]. Through autophagy path-
way Tau aggregates are degraded [264,265]. Autophagic grid-
lock also helps to the development of AD-like tauopathy [266]. 
The excess of AVs in the brains of AD animal models and AD pa-
tients is in clear comparison to the infrequently-observed AVs in 
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normal brains, which supports that the assembly of pathogenic 
proteins like as Aβ and tau in AD may be the reason of defective 
autophagy-lysosome proteolysis pathway [261,262].

Uptill now, APP, PS-1, PS-2 the three main causative genes 
have been known for early-onset Familial AD (FAD) [267]. Wild 
type PS1 with no known mutation forms has been found, by 
controlling the regulation of v-ATPase subunit V0a1 onto lyso-
some, is vital for lysosome acidification and consequently lead 
to the regulation of autophagy-lysosome degradation system in 
a γ-secretase-independent way [268]. Furthermore, study has 
found that ApoE4 in neuro-2a cells potentiate lysosomal leak-
ages and increases Aβ peptide-induced apoptosis [269]. In brain 
due to gradual accumulation of AVs and lysosomal shortage is 
well known to be another hallmark of AD [270] however, au-
tophagy dysfunction is the result or the cause of AD is still a 
debate [271,272]. Moreover, gender difference may affect the 
malfunction of auto-lysosome system [228]. In general, data 
shows that autophagy plays a protective role in early stages of 
AD, while in more advance stages neuronal degeneration seems 
to be possible.

Modulation of autophagy as AD therapy

The mammalian Target Of Rapamycin (mTOR) is a well-es-
tablished main pathway that sense nutrient for cell metabo-
lism by incorporate several signaling cascades into the cells 
[273-275]. Genetic mTOR signaling reduction in Tg2576 mice 
brain increased autophagy induction and restored normal sig-
nature of hippocampal gene expression, leading to reduced 
Aβ deposit and alleviated memory deficits (Figure 3) [276]. 
Signaling via mTOR controls tau homeostasis [277]. Pharma-
cologically dipping mTOR signaling by rapamycin improved tau 
pathology [278]. Continuing inhibition of mTOR with rapamycin 
or latrepirdine often inhibits AD like cognitive deficits and re-
duce Aβ42, amyloid plaques and tau NFTs [279-282]. However, 
it must be remembered that many other cell function such as 
gene translation and cell growth has been regulated by mTOR 
signaling cascade. Long-term inhibition of the mTOR pathway 
can cause harmful side effects in patients. Rapamycin is there-
fore not suitable long-term drug candidate. A new definite in-
ducer of autophagy is immediately required for the field. The 
administration of lentiviral beclin1 vectors in APP transgenic 
mice, contributes to autophagy induction, and reduces both 
intracellular and extracellular amyloid pathological condition 
[283]. The association between beclin1 and its endogenous in-
hibitor B-cell lymphoma 2 (Bcl2) is reduced by one-point mu-
tation (F121A). Induction of beclin1F121A in mice contributes 
to the active autophagy in numerous tissues comprising brain, 
even deprived of any autophagy-induction stimulation. The hy-
peractive autophagy with beclin1F121A dramatically decreases 
the deposition of amyloid, and inhibits the cognitive deteriora-
tion, and increase the survival rate in AD mouse models [284]. 
With a gene therapy strategy, cognitive deficiencies in APP/PS1 
mice were recovered by rising brain p62 expression. Strategies 
shown in figure 3 can offer targeted AD therapy more accurate-
ly. Autophagy stimulation also decreases neurodegeneration in 
a mouse model of human tauopathy [285].

Figure 3: Potential strategies for the treatment of Alzheim-
er’s disease by modulating autophagy. Induction of autophagy (A) 
in the brain to reduce of Aβ aggregates and NFTs. Stimulation of 
autophagosome-lysosome fusion (B). Enhancing lysosomal func-
tion (C). Stabilizing retrograde transportation of the autophago-
somes (D). Green dots are representing molecular motor dynein/
dynactin.

On the other hand, contradictory evidence from latest stud-
ies in AD models shows the applicability of autophagy induction 
is uncertain as a common treatment technique for AD. Irregular 
stimulation of autophagy can result in increase of Aβ production, 
as aggregated vesicles comprising active γ-secretase machinery 
[286,287]. More and more research supports the idea that the 
result of autophagic variation is context-dependent. Research 
has support autophagosome can be a main pool for Aβ produc-
tion in AD brain [285]. Stimulation the formation of new au-
tophagosome but not associated with a similar autophagic flux 
increase that may actually lead to enhance Aβ assembly and 
catabolic contents leaking from AVs [288]. All of this should be 
taken into account when taking into consideration autophagic 
modulation as a treatment, what the autophagy deficiency is, 
how long and how strong it for modulation? For example, it has 
been stated that Aβ42-induced cell death can be aggravated by 
inhibition but not by autophagy [289,290]. So, the advantage of 
enhanced induction of autophagy thus tends to be contex-de-
pendent, while neuronal survival involves basal autophagy. The 
results also indicate that the activation of autophagy following 
the development of mature tangles and plaques had no impact 
on cognitive impairment or other AD-like pathology, although 
that autophagy induction decrease solubilized tau, Aβ and am-
yloid plaques level in 3xTg-AD mice prior to the formation of 
AD like pathology [282]. Furthermore, the variation in models 
should partly produce conflicting data on the role of autophagy 
modulation In addition, systematic research is needed for com-
prehensive observing the levels of autophagic modulation in 
different cells (neuron vs. glia) in AD as discussed below.

Furthermore, the aggregation of insoluble Aβ42 can be the 
direct reason of the of autophagic impairment development 
over time [291]. In favour of this hypothesis, a recent updated 
report presented that no transformation into autophagic/lyso-
somal failure was noticed in TgCRND8 mice when treated with 
an endogenous inositol stereoisomer i.e. scyllo-inositol, which 
is known to prevent Aβ42 accumulation and fibril generation 
before the onset of autophagic/lysosomal failure. In compari-
son, immature AVs and autophagic/lysosomal substrates were 
considerably gathered in vehicle-treated TgCRND8 littermates 
[292].

Recent studies have shown that auto-lysosome dysfunction 
in AD pathogenesis is triggered by impaired lysosomal proteolyt-
ic activity [293]. The genetic ablation of cystatin B, a lysosomal 
cysteine proteases inhibitor, significantly increase lysosomal 
activity in TgCRND8 AD mouse model with strong deficiency in 
proteolytic clearance of autophagic substrates (Figure 3), lead-



ing to enhanced clearance of the autophagic substrates, and 
clear mitigation of memory loss and amyloid pathologies in the 
animals [263,294]. In therapeutic direction, pharmacological 
compounds with such special effects would significantly facili-
tate research [295].

Targeting autophagy through combinational therapy

Theoretically, consecutively use of two pharmacological au-
tophagy-inducers that act via different regulatory pathway will 
give more beneficial effect. Certainly, by using trehalose or lithi-
um an mTOR-independent autophagy enhancer and the mTOR-
dependent autophagy enhancer rapamycin in amalgamation 
upregulate autophagy more broadly and contributes to a faster 
clearance of protein aggregates rather than using each alone 
[296,297]. Furthermore, the use of two drugs in combination 
may facilitate reduction of the treatment dose rather than in 
comparison with treatment alone, which could significantly de-
crease the possibility of aggressive effects. In such a situation, 
it could be an encouraging mediation approach to moderately 
upregulate autophagy induction in combination to stimulate 
the effective completion of autophagic degradation. Though, to 
target the defective lysosomal proteolysis and the autophagy 
induction at the same time is still a major challenge.

The Transcription Factor EB (TFEB) seems to fulfill both of 
these criteria as it coordinately triggers lysosomal biogenesis 
as well as genes required for autophagosome formation [298]. 
With its effectiveness has previously been presented under nu-
merous neurological conditions, including lysosomal storage 
disorders [299], Huntington’s Disease (HD) [300] and Parkin-
son’s Disease (PD) [301], it is predictable that in the AD context 
similar benefits may also be attained. A recent study shows that 
in addition, TFEB may actually be beneficial for patients with AD 
treatment [302]. On the other hand, the issues of AV’s clear-
ance slowdown and disrupted lysosomal function could be ap-
proached by pharmacological treatments which boost the cata-
lytic performance of lysosomal enzymes and instantaneously 
reducing the burden of auto-lysosomal pathway, as seen in the 
study of ( Figure 3) [303].

Other possible approaches

On the other hand, mediations aiming at decreasing the bur-
den to the improper functioning autolysosomal compartments 
hold some potential target as well. For example, it may all help-
ful to inhibit Aβ production and oligomerization together with 
lowering cholesterol. A cholesterol-lowering drug 2-hydroxy-
propyl-beta-cyclodextrin has been shown to be a potential 
emerging pharmacological drug for AD model [304]. As for Aβ, 
a recent study suggests that useful specific inhibitors of Aβ in-
hibitors may be produce from peptides that interrupt the physi-
cal communication among the APP and PS1 [305]. Ultimately, 
since growing evidence recommends that repairing proper en-
dosomal trafficking (recycling) may have a same effect, an addi-
tional possible strategy to solve this issue is to develop selective 
pharmacological modulators of these procedures. Two current 
studies providing the first proof of concept test by developing 
pharmacological stabilizer of the retromer sorting complex for 
AD treatment [303,306].

It is also very important to investigate biomarkers that can be 
implemented broadly in clinical settings to determine the ther-
apeutic efficacy of autophagy modulation for a deeper under-
standing of autophagic malfunction in AD and for the effective 
creation of therapeutic strategies based on autophagy modula-
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tion [307]. Therefore, as proof against autophagy pathway drug 
ability in the late stage of the disorder, further research may 
seek to find prevention or therapy trials in the early stage of 
AD [308].

Conclusion

Besides all the efforts towards the discovery and develop-
ment of AD therapeutics, the disease is not completely treat-
able. Therefore, there is a need to discover the undiscovered by 
understanding the mechanisms of disease pathology and fill the 
existing therapeutic gaps.
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