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Cancer Therapy

Introduction 

Cancer cells are equipped for adjustment prompting drug 
resistance, which is the fundamental issue of treatment in all 
malignant growths, like Prostate Cancer (PC). Despite the fact 
that a wide scope of anticancer drugs, including research-based 
agents and medications confirmed for human use, is accessible, 
most of them lose their treatment efficiency in course of time 
[1]. The androgen-dependent pathway is yet a primary focus in 
PC, which is the second in occurrence and the first in mortal-
ity among cancer types in all over the world [2]. The Androgen 
Receptor (AR) is a main component of the pathway. Inert AR is 
generally found in the cytoplasm. When a ligand (dihydrotes-
tosterone, DHT or testosterone) is bound to it, AR is moved into 
the nucleus and functions as a Transcription Factor (TF) to trig-
ger expression of many genes in charge of modulating cell dif-
ferentiation and proliferation. In most of cases, PC is sensitive to 
the blood testosterone concentration on early treatment. In this 
way, decreasing androgen accessibility represses or suspends 
the disease progression. In any case, drug resistance definitely 
advances in course of time, prompting a fast PC progression in 
androgen deficiency [1]. Various new medications have newly 
taken part in clinical usage to treat PC (also metastatic PC) ad-
vancing at constrained androgen accessibility. Anti-androgen 
medications, for example, enzalutamide and abiraterone, bal-
ance out the disease progression and suspend the beginning 
of chemotherapy [3,4]. However, the tumor turns into insensi-

tive to the medications with time and, in addition, generates 
cross-resistance; in another saying, resistance to one medica-
tion produces a weak efficiency of following therapy with dif-
ferent medications [5]. Tumors resistant to anti-androgens are 
major downsides of recent uro-oncology. This chapter includes 
different pathways responsible for drug resistance in PC. The 
pathways may classically be separated into two massive sets as 
androgen-dependent and androgen-independent. The drug re-
sistance mechanisms contains increased transcriptional activity 
of AR; AR mutations affecting binding efficiencies of AR ligands; 
expression of abnormally expressed functional AR splice vari-
ants, that don’t need a ligand for activation; over-expression of 
genes associated with androgenic hormone synthesis; and lots 
of alternative mechanisms [6].

Increased transcriptional efficiency of AR

Numerous investigations have appeared that post-transla-
tional AR alterations may upgrade transcriptional efficiency AR 
at reduced androgen levels. This can conduce to AR re-activa-
tion within CRPC status, and improvement of insensitivity to CY-
P17A1 blockers like abiraterone [7]. Tyrosine phosphorylation of 
AR is frequently seen in hormone-insensitive when compared 
to sensitive cases, and findings propose that phosphorylation 
controls AR transcriptional efficiency [8]. Tyrosine phosphory-
lation is modulated by proteins like SRC and ACK1, which are 
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up-regulated when androgen concentrations are decreased. 
Co-activator proteins’ increased transcriptional activity, or co-
repressor proteins’ decreased efficiency, may thence increment 
AR transcriptional efficiency, and can be crucial in progressive PC 
development during androgen deprivation and insensitivity to 
CYP17A1 blockers. In the androgen depletion, AR activation can 
be activated by interleukin 6 (IL-6) and Src-1 [9]. Rised activity of 
SRC1 in non-metastasized PC is correlated with a more aggres-
sive characteristic, and reduced expression depresses PC devel-
opment and AR transcriptional efficiency [10]. Up-regulation of 
IL-6 takes a crucial function in PC development and the forma-
tion of CRPC. IL-6 can trigger insensitivity to anti-androgens by 
overexpression of Translation Initiation Factor eIF4A (TIF2). An 
identical system of insensitivity can originate for enzalutamide. 
Increased levels of TIF2 at androgen deficient media can trigger 
increased AR efficiency in case of ligand absence [11].

In a huge Phase III clinical trial, READY, evaluating dasatinib, 
which is a multi-kinase blocker and known to suppress SRC in 
a combinatorial manner together with docetaxel in patients 
with chemotherapy-naive CRPC, there was not a difference ob-
served in median OS between docetaxel alone versus dasatinib 
plus docetaxel, unfortunately [39]. Furthermore, a chimeric 
monoclonal antibody against IL-6, siltuximab (CNTO 328), has 
composed encouraging outcomes in a Phase I clinical trial in a 
combinatorial manner together with docetaxel; yet, two follow-
ing Phase II clinical trials of siltuximab (applied as alone or in a 
combinatorial manner together with mitoxantrone) presented 
minimum clinical efficiency in CRPC [12,13].

AR conformational changes for alternate activation sys-
tems

Among the systems implemented by cancer cells to over-
come apoptosis initiation by Androgen Deprivation Therapy 
(ADT), a few systems include useful adjustments of AR activities. 
One of the preceding findings in figuring out the advancement 
of hormone-resistant disease accompanied with the detection 
of AR gene overexpression [14], observed in approximately one 
fourth of Castration Resistant Prostate Cancer (CRPC) tissue 
samples however actually not expressed in hormone-sensitive 
tumor [15]. Also, researches have demonstrated that anti-an-
drogen resistance is coherently associated with over-expression 
of AR, projecting adjustments to enhance responsiveness to 
fallen androgen (ligand) levels in continuing AR programs [16]. 
Anti-androgens utilized in combinatorial androgen stoppage 
in hormone-responsive disease generally use bicalutamide, 
and less frequently nilutamide and flutamide. A critical per-
ception in this setting was that 15-30%. A crucial investigation 
in this program was that 15-30% of tumoral tissues, after get-
ting insensitive to androgen stoppage, would display relapses 
after stopping of treatment, an event clinically described as 
anti-Androgen Withdrawal Syndrome (AWS) [17]. Presently, it 
is welcomed that specific AR mutations are admitted to cause 
reactivation of AR signaling; T877A mutation, for instance, gives 
insensitivity against hydroxyflutamide, the effective structure of 
flutamide [18]. A different mutation of AR ligand binding area, 
W741C/L, provides insensitivity against bicalutamide [19]. Fur-
thermore, the formerly referenced T877A mutation accompa-
nied with a different AR mutation L701H practically presents a 
complicated glucocorticoid-based activation of AR [20]. When 
AR-dependent target genes in androgen-dependent and an-
drogen-independent cells are compared, it is shown that AR-
modulated transcriptional system is prominently changed in 
castration-insensitive disease, particularly with regards to cell 

cycle related genes, causing the cell cycle checkpoints’ inactiva-
tion [21].

Splice variants of androgen receptor 

Over-expression of constitutively functional AR splice vari-
ants (AR-Vs) shows a crucial molecular mechanism for tumor 
development in the course of ADT, and seems to be a significant 
clinical mechanism of insensitivity to AR-targeted drugs in pa-
tients with mCRPC [22]. Numerous alternately spliced AR-Vs are 
deprived of ligand-binding domain at C-terminal however keep 
the trans-activating domain at N-terminal, driving to constitu-
tively functional AR in a ligand-independent manner [23]. Trun-
cated patterns of full-length AR (AR-V11 to AR-V1) or skipped/
missing exons (AR-V12 to AR-V14 and AR-V567es) are ways to 
form AR-Vs [22]. Among the distinct AR alternatives described 
in PC, ARv567es and AR-V7 are the most prevalent [24]. Both 
are over-expressed in mCRPC when compared to hormone-na-
ive metastatic cancer, although V7 has only been constitutively 
expressed in human specimens. AR-V567es has been defined in 
xenografts originated from mCRPC upon extended administra-
tion of ADT, is over-expressed in tumoral tissues of xenografts 
that have obtained enzalutamide insensitivity, up-regulated in 
human metastatic tissues, and is included within de novo tumor 
development [25-27].

Observation of AR-V7 in Circulatory Tumor Cells (CTCs) has 
been correlated with insensitivity to enzalutamide and abi-
raterone. In a research of 62 patients with mCRPC exposed to 
abiraterone (n=31) or enzalutamide (n=31), 18 patients (6 tak-
ing abiraterone; 12 taking enzalutamide) had noticeable AR-V7 
mRNA in their CTCs. The subjects with observable AR-V7 had 
no considerable Prostate-Specific Antigen (PSA) decreases and 
shorter median OS and Progression-Free Survival (PFS), when 
compared to the patients having no observable AR-V7. In a sur-
veillance trial, these findings were more encouraged, although 
roughly 14% had leastwise 50% PSA decrease [28]. The detec-
tion of circulatory AR-V7 RNA outside CTCs has further been 
correlated with weaker results with enzalutamide and abirater-
one [29]. In a molecular specification research, 37% of patients 
with mCRPC taking enzalutamide showed primary insensitivity. 
AR-V7 expression was more frequent in subjects with primary 
insensitivity (P=0.018) and AR-V7 was not detected in tumors 
from the subjects who had extended efficacy through enzalu-
tamide therapy. This research presented a movement of AR 
from nucleus to cytoplasm, which associated with PSA decrease 
and raised testosterone concentration in patients upon enzalu-
tamide therapy, proposing that enzalutamide inhibits AR sig-
naling, besides activates adaptable feedback [30]. Different re-
searches showed that down-regulation of AR-V7 in PC cell lines 
increments response to enzalutamide [31]. It has been pro-
posed that ARv567es or AR-V7expressions trigger insensitivity 
to AR-targeted treatment modalities in case of ligand deficiency 
by generating dimers with full-body AR and enabling AR nucle-
ar trafficking, thence reducing the efficacies of anti-androgen 
treatments to suppress AR nuclear localization [32].

Alternate signal transduction pathways

AR actions can be triggered by alternate signaling systems, 
numerous of which takes crucial functions within other human 
cancers’ development [33]. Signaling system by NF-κB transcrip-
tion factor has a certain function in CRPC progression by sus-
taining AR action and maintaining AR transcriptional and trans-
lational efficiency [34]. Moreover, its gene mark is adequate in 
anticipating survival specified to prostate cancer in clinical tests 
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[35]. Further substantial survival signaling systems (skipping 
AR-triggered instruments), like PI3K/AKT pathway, have been 
investigated in terms of transformation to metastatic CRPC and 
defined as supporters to progressed metastatic cancer [36]. Re-
duced activity of tumor suppressor PTEN and negative modula-
tor of this system is one of the most common molecular chang-
es in human prostate cancer. In fact, PTEN deficiency causes the 
advancement of AR signaling in a growth independent manner 
and the improvement of castration insensitivity is inherent and 
not unexpected on maintained AR action [37]. Additionally, 
PTEN state at diagnosis is prescient for both metastasis, pros-
tate cancer-specific survival and time to CRPC, and reaction to 
ADT [38]. At last, growth factors like Keratinocyte Growth Factor 
(KGF), Epidermal Growth Factor (EGF) and Insulin-Like Growth 
Factor 1 (IGF-1) have been presented to immediately trigger AR 
in an androgen-independent manner [39]. 

Alternate co-activators

The AR is accepted to be associated with a plenty of co-re-
pressors and co-activators, numerous of which take a function 
within the transformation to castration-insensitive form [21]. 
Co-activators improving AR action may practically conduce to 
increased sensitivity of AR for alternate ligands during the en-
dogenous androgen deficiency [40]. For case, ARA70, the co-
activator, may increment estradiol sensitivity of AR in prostate 
cancer cell lines [41]. A different co-activator, FKBP51, consoli-
dates HSP90-AR complex, upgrading the capacity of AR mole-
cules to recruit androgens [42]. Lastly, TRIM24 may be an on-
cogenic co-activator for transcription that has been appeared 
to conduce to AR signaling beneath castrate androgen levels 
in CRPC and in SPOP mutants [43]. In addition, a recent study 
showed that TRIM28 protein interacts with TRIM24 to inhibit its 
ubiquitin-dependent degradation by Speckle-type POZ protein 
(SPOP). By this way, TRIM28 enables TRIM24 availability on the 
chromatin and, as TRIM24, triggers AR signaling in aggressive 
resistant types of PC [44].

Conclusion

All in all, this chapter summarizes our actual comprehension 
of drug resistance mechanisms in transition to and after the 
castration resistance generation, emphasizing reversible and 
targetable pathways of insensitivity. Therapeutical approaches 
for advanced CRPC in clinic is hard because of the variety of in-
sensitive clones, particularly in those resistant to various types 
of treatment options. The forthcoming PC treatment modality 
will probably contain both serial liquid biopsy to evaluate dis-
ease grade and search for extra functional targets, and tactical 
combinatorial treatment strategies triggering reversal of the in-
sensitive characteristic.
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