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Importance & Applications of Nanotechnology

Introduction

The combat mode of pesticides has not only proven fatal to 
pests but their harmful elements are gradually decimating the 
health of all living beings including humans through the funda-
mental intakes. The term pesticide includes a diverse range of 
compounds such as insecticides, fungicides, rodenticides, her-
bicides, molluscicides, nematicides and plant growth regulators 
[1]. The origination of synthetic insecticides-organophosphates 
(OP) in 1960s, carbamates in 1970s and pyrethroids in 1980s 
along with the initiation of use of herbicides and fungicides in 
the 1970s-1980s era has contributed immensely to pest control 
and agricultural output but has simultaneously created havoc in 
the life of other living organisms including humans. The amount 
of risk associated with a pesticide depends on the amount of 
exposure and the toxicity of the ingredients. Pesticides cause 
acute exposure effects such as dyspnea, pulmonary edema, and 
eye and skin irritation. Chronic exposure effects include car-
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Abstract

Pesticides are chemical compounds that are employed to 
eliminate, repel, or control certain forms of plant or animal 
life that are deemed as pests. Usage of pesticides enhances 
the crop yield, but they are potentially hazardous to hu-
mans, animals, and the environment. Toxicity of pesticides 
including insecticides, fungicides can result in diseases such 
as nausea, dizziness, vomiting, abdominal muscle cramps, 
muscle twitching, tremors, weakness or loss of coordina-
tion; making their detection the need of the hour. Con-
ventional techniques including mass spectrometry and gas 
chromatography suffer from limitations such as operational 
complexities, requirement of sophisticated instruments and 
issues related to portability. High sensitivity and stability of 
nanomaterials based biosensors makes them suitable candi-
dates for on-site detection of pesticides. This report reviews 
different biosensors that have been employed for detection 
of pesticides, laying down their specific limitations. It also 
discusses the need to develop alternate nanoparticle based 
sensors with high specificity, sensitivity and capability of on-
site analysis.Keywords: Pesticides; Nanotechnology; Nanoparticles.

cinogenesis, mutagenesis, pre- and postnatal damage and re-
productive system damage [1]. Organochlorine compounds (OC 
compounds) can damage tissues of essentially every life form 
on this planet, such as the fish that live in water bodies and the 
birds that feed on these aquatic life forms. Ideally a pesticide 
must be fatal to the target pests, but not to non-target species, 
including humans. However, the increasing usage of pesticides 
to increase crop yield has persistently affected human health, 
thus surfacing the controversy on the use of pesticides.

Prompt, on site and accurate analysis of pesticides is impor-
tant due to their increasing use to improve crop yield and their 
consequent health effects. Sophisticated techniques such as gas 
chromatography [2-4], liquid chromatography-mass spectrom-
etry [5] have been used for analysis. However, these techniques 
are laborious, require sophisticated instruments and trained 
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personnel for operation. Moreover, they lack the capability of 
onsite/in-situ application and multiple sample analysis. Bio-
sensing of pesticides using enzymatic, catalytic or immuno-
logical sensors [6,7] has helped in overcoming the limitations 
of conventional techniques opening a new arena in pesticide 
detection.

Whole cell biosensors based on various amperometric [6], 
conductometric [8] and potentiometric [9] detection techniques 
have also been employed for pesticide detection. However, low 
specificity and narrow detection range of biosensors has led to 
research on novel detection methods based on nanoparticles. 
Over a period of time, we have observed increasing synergy be-
tween nanotechnology and biosensors which has been utilized 
owing to their ability in recognizing threat agents in real time 
as also performing detection with high sensitivity and selectiv-
ity. Nanoparticles based on silver, gold, titanium and other ma-
terials (like CdS-decorated graphene nanocomposite and TiO2 
decorated graphene) have been used for detection of several 
small molecules including pesticides [10]. Nanoparticle based 
sensors have been used for detection of wide variety of pesti-
cides including organophosphate pesticides like malathion [11] 
and rhodamine [12] herbicides like simazine [13] and insecti-
cides like monocrotrophos [14], paraoxon [15], methyl para-
thion [16], phoxim and carbofuran [17] in water, food and soil. 
However, cost of production, facileness of sensor fabrication 
techniques and the dependability for trace level detection of 
pesticides are some concerns of nanoparticles based sensors. 
Hence, research efforts have been directed towards designing 
efficient biosensors based on nanomaterials that display high 
sensitivity and stability. 

Gold nanoparticles (AuNP) absorb and scatter light strongly 
at their Surface Plasmon Resonance (SPR) wavelength region 
and this property of AuNPs makes them one of the most valu-
able optical probes for applications that involve sensing. The 
intense absorption or scattering of AuNPs at the visible light 
region makes them easily discernible by the naked eye or de-
tectable by affordable instruments. This localized SPR property 
of the nanoparticles enables identification of pesticides at very 
low concentrations and conserves the sensor activity up to a 
large extent with a great storage shelf life. This report focuses 
on different biosensors available for pesticide detection, their 
limitations and explores the possible use of gold nanoparticles, 
aptamers, Molecularly Imprinted Polymers (MIPs), and Artificial 
Neural Networks (ANNs) based biosensors for cheaper, sensi-
tive and in-situ detection of pesticides in water.

Pesticides and their health effects

Pesticides are substances which intend to mitigate, destroy, 
repel, or prevent any type of pest. It includes a variety of com-
pounds including herbicides, insecticides, antimicrobials, and 
bug repellents. Defoliants, plant growth regulators and nitro-
gen stabilizers are also pesticides. All pesticides have some risk 
and the amount of risk depends upon the amount of exposure 
along with toxicity of ingredients. All categories of pesticide 
increase crop yield by inhibiting growth of pests or unwanted 
organism, but at the same time pose a great deal of harm to 
human health. 

Dichlorodiphenyltrichloroethane (i.e., DDT) is the most 
popular organochlorine pesticide that has raised many envi-
ronmental and human health issues due to its uncontrollable 
use [18-20]. In-utero exposure to DDT and DDE both has been 

confirmed to cause neurodevelopment disorders in children. 
Health effects, such as endocrine disorders [21,22] effects on 
foetal developments, hepatic alterations and metabolism of 
lipids have also been associated with excessive use of these 
chemicals. Chemicals such as organophosphates majorly found 
in pesticides leads to acute, long term poisoning of human sys-
tem and neurotoxicity which all are result of inhalation, inges-
tion, skin or eye contact, and with regular or daily exposure to 
OPs. Certain reproductive effects (such as birth effects, hostile 
uterus, pre-term delivery), psychological effects (nervousness, 
irritation, insomnia) and the chronic neurotoxic effects (delayed 
organophosphate induced polyneuropathy, Alzheimer disease, 
attention deficit/ hyperactivity disorder in children) can poten-
tially be caused due to OPs. Therefore, spotlight on OP turns out 
to be essential for health protection.

Carbamate also a class of popular chemicals, have the ability 
to cause cytotoxicity and genotoxicity and to induce necrosis 
in human immune cells [23] natural killer cells [24,25] and also 
apoptosis in T lymphocytes [26].

Atrazine is a potential endocrine disrupter and according to 
research, it interferes and alters the levels of key hormones in 
rats and cause delayed puberty. Rhodamine causes nasal itch 
and burn, chest pains, excessive tearing of eyes. Acute exposure 
to this chemical may even cause transient mucous membrane 
and skin irritation without evidence.

Conventional stratergies for pesticide detection

The detrimental effects of pesticide residues on human 
health, led to development of techniques that could sense and 
detect pesticide in various items that were being consumed 
by humans including food and water. Conventional techniques 
used for pesticide detection included liquid/gas chromatogra-
phy [2-4,27], High Performance Liquid Chromatography (HPLC) 
and mass spectroscopy [5]. However, these techniques were 
limited by use of sophisticated instruments, need of a trained 
personnel for operation, tedious pre-treatments of the sample. 
Moreover, involvement of large time spans, high cost and un-
suitability for multiple sample analysis resulted in exploring bio-
sensors for pesticide detection.

Biosensors offer highly sensitive, specific, cost effective and 
rapid real-time detection of pesticides. Moreover, the devel-
oped biosensors are re-usable and allow in-situ monitoring of 
the trace amounts of pesticide. Different categories of biosen-
sors including enzymatic, whole cell, immunosensors and DNA 
based biosensors have been successfully developed for pesti-
cide detection. Different biosensors developed have been sum-
marized in the following sections.

Enzymatic biosensors

Enzymatic biosensors are based on the effect of pesticide 
on the enzymatic activities in the organism that is affected by 
it. Effect of pesticides is often observed either by inhibition of 
enzyme activity and thus the products formed (Inhibition based 
enzymatic biosensors) or in terms of enzymes acting as cata-
lyst (for eg. release of protons or formation of chromophoric/
electro-active substance) which are present in sufficient quan-
tities to be detected (Catalytic enzymatic biosensors). Various 
pesticides that have been detected using the two mechanisms 
of enzymatic biosensors along with the enzyme involved have 
been listed in Table 1.
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Table 1: Enzymatic Biosensors.

Principle of operation of biosensor Enzyme utilized Pesticides detected References

Inhibition based biosensors

Cholinesterase Organophosphates and carbamates  [28]

Tyrosinase Carbamates and atrazine [29]

Peroxidase Thiodicarb ( a carbamate) [30]

Alkaline phosphatase Organochlorine and paraoxon [31]

Acid phosphatase Thiodicarb ( a carbamate) [32]

Catalytic biosensors
Organophosphorus Hydrolase Organophosphorus (parathion, paraoxon) Chen et al., 2010, Lee et al., 2010

Glutathione-s-transferase Atrazine Andreou et al., 2002

However, since there are multiple impurities beyond pes-
ticides that include heavy metals and detergents that also af-
fect the enzyme functioning that’s why these sensors can’t give 
the proper qualitative and quantitative measure of the analyte 
present as in AChE. There is a certain extent up to which the en-
zyme affects which is not revealed by these biosensors. In case 
of inhibition based sensors there is limited range.

Whole cell biosensors

Whole cell biosensors require cell as an immobilizing element 
during the detection process during transduction. The catego-
rization of these biosensors is done on the basis of the type of 
cell being used which includes microbial and plant cells. Whole 
cell biosensors are based on various transduction schemes such 
as amperometric, potentiometric & conductometric. Table 2 
summarizes different whole cell biosensors that have been em-
ployed for detection of pesticides. Despite the wide range of 
applications of whole cell biosensors, the market value of these 
biosensors is reduced due to nonspecific reactions leading to 
low selectivity and slow response as the products need to diffu-
sion through cell wall to produce a detectable signal [33].

Immunosensors

Antigen antibody interaction marks the basis of forming an 
immunosensor. The antibodies are immobilized on a substrate 
and they interact with the antigen forming a complex. Changes 
in optical and electrochemical aspects of the complex formed is 
instrumental in detection process. For an ideal immunosensor, 
it should possess quality of detecting and quantifying the anti-
bodies in real samples. Several immunosensors developed for 
pesticide detection based on different transduction methods 
are listed below in Table 3.

Applicability of immunosensors in limited, as they require 
cumbersome processes of producing monoclonal antibodies 
are costly and time consuming. Moreover, immunosensors are 
also associated with complexities in the form of animal care to 
generate monoclonal antibodies limiting their application.

DNA Biosensors

DNA biosensors are recognized by the molecule of DNA that 
is immobilized on the electrode. The changes in redox proper-
ties of the DNA form the basis of the sensing abilities of these 
sensors. Pesticides including atrazine, 2, 4-Dglufosinate ammo-
nium, carbofuran, paraoxon-ethyl and difluorobenzuron have 
have been detected using DNA biosensors [51]. These biosen-
sors generally lack selectivity and further cost and reusability 
issues limit them.

Nanoparticles based biosensors for pesticide detection

Use of nanomaterials in sensors allows the use of many 
new signal transduction technologies in their manufacture. 
Nanosensors, nanoprobes and other nanosystems are radically 
transforming the fields of environmental analysis in lieu of their 
size. The immobilization of nanomaterials onto sensing devices 
generates novel interfaces that enable the sensitive optical or 
electro- chemical detection of analytes. Table 4 below lists vari-
ous nanoparticle-based biosensors that have been designed for 
detection of pesticides. Within the group of noble metal nano-
particles, gold nanoparticles are mostly used for biosensor ap-
plication due to their biocompatibility, optical and electronic 
properties, and relatively simple production and modification . 
These magnificent properties of gold nanoparticles have made 
them rising candidates not only for bio-analytics but for various 
other research fields. 

Application domain of nanomaterials based sensing for pes-
ticide residue detection is vast, nevertheless some issues such 
as availability of the nanomaterials sensitive to common pes-
ticide residues, ease of sensor fabrication techniques and in-
strumentation, desired reliability and repeatability in trace level 
detection, cost and issues related to nanomaterial exposure to 
the surrounding environment need to be considered [52].

Table 2: Whole cell biosensors used for pesticide detection.

Type of biosensor Recognition microorganism Pesticide detected Reference

Microbial biosensors
E. Coli Organophosphates [34]

Arthrobacter, Flavobacterium and Pseudomonas putida Organophosphates [35,36]

Plant tissue and photosynthesis 
based biosensors

Chlorella vulgaris (Plant tissue based) Alkaline phosphatase linked pesticides [37,38]

Dictyosphaeriumchlorelloides, Scenedesmusintermedius 
(Photosynthesis based)

Simazine and herbicides
[39-42]
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Table 3: Immunosensors for pesticide detection.

Type of biosensor Method of transduction Pesticide detected Reference

Electrochemical

Amperometric
2,4-Dichlorophenoxy acetic acid [6]

Atrazine [7]

Conductometric Atrazine [8]

Potentiometric Terbuthylazine (tba) [9]

Electrochemical impedance spectroscopy
Atrazine [43]

2,4-Dichlorophenoxy acetic acid [43]

Optical

Surface plasmon resonace DTT, Chlorpyrifos and Carbaryl. [44]

Fluorescence polarisation Atrazine [45]

Total internal reflection fluorescence (TIRF) Atrazine, simazine and alachlor [46]

Polarisation-modulation infrared reflection-ab-
sorption spectroscopy (PM-IRRAS)

Atrazine [47]

Piezoelectric immunosensors Clorpyrifos, Triclopyr [48]

Mechanical Immunosensors

Atrazine [48,49]

DDT [50]

2,4-Di chlorophenoxy acetic acid [48]

Table 4: Gold Nanoparticles based biosensors for detection of pesticides.

Type of material Pesticide detected Detection limit Principle of detection Reference

Gold nanoparticles (AuNP)

Herbicide simazine 0.013 µM Electrochemical [13]

Organophosphate pesticides 35 ppb Colorimetric [53]

Methyl parathion 0.07 ppb Electrochemical [54]

Methyl Paraoxon
Carbofuran
Phoxim 

2x10-11M
1x10-10 M
2x10-9M

Amperometric [17]

Dichlorodiphenyltrichloroethane (DDT) 27 ng/mL Dipstick immunoassay [55]

Paraoxon 12 µg/L Electrochemical [15]

Paraoxon
Carbofuran

1x10-4 µM
1x10-5 µM

Amperometric Sirvent et al., 2001

Gold nanoparticles/ dragon fly arrays Rhodamine 10-8 M
Surface Enhanced Raman 
Spectroscopy (SERS)

[12]

Fe3O4 functionalized grapheme oxide – 
AuNP

Catechol Hydroquinone 
0.8 µM
1.1 µM

Electrochemical [56]

4-amini-3-mercaptobenzoic acid function-
alized AuNP

Cyhalothrin 0.75 µM Colorimetric [57]

Au-Na dodecylbenzene sulphonate nano-
particles

Methyl parathion 8.6x10-8 mol/L Electrochemical [16]

CdTe quantum dots/ AuNPs Monocrotrophos 1.34 µM Amperometric [14]

Aptamers based nanoprobes

Malathion 1.94 pM Optical [11]

Acetamiprid 3.2 nmole/L
Optical and electrochemi-
cal

[58]
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Various detection mechanisms have been employed in the 
development of biosensors for the estimation of pesticides up 
to miniscule levels.

New trends in biosensors

The new trends in the biosensor offer advantage over the 
conventional types of biosensors. These include:

Aptamers

The nucleic acid sequences that bind to the analyte not nec-
essarily a Nucleic Acid is known as an Aptamer. SELEX (Selection 
Evolution of Ligands by EXponential enrichment) is the tech-
nique used for designing these aptamers specific to a particular 
analyte.

These aptamers have wide range of detection abilities includ-
ing metal ions, microbes, proteins and so on. They offer more 
stability than the antibodies used in the immunosensors as they 
can be used under extreme conditions they offer modifications 
without any compromise to their activity [59-63]. Less batch to 
batch variation while production makes them a good candidate 
for organophosphate detection [28].

Further, these aptamers are use in various fields of medical 
diagnosis, bioimaging, drug delivery and therapy, environmen-
tal toxicity testing as biomaterials.

Table 5: Aptamers based biosensors for detection of pesticides.

Type of material Pesticide detected Detection limit Principle of detection Reference

Platinum
Acetamiprid 0.6 X 10-11 M

Impedimetric
[64]

Atrazine 0.4 X 10-10 M

Micro cantilever array sensor Profenofos 1.3 ng mL−1 optical [65]

Silver Malathion 5 X 10-7 to 1 X 10-5 mol.L-1 Surface-enhanced Raman scattering [66]

Gold Malathion 1.94 pM Colorimetric [11]

Platinum
Acetamiprid 1 pM

Impedimetric [64]
Atrazine 10 pM

GO-CuNPs*

Prophenofos 0.003 nM

Co-electrodeposition [67]
Phorate 0.3 nM

Isocarbophos 0.03 nM

Omethoate 0.3 nM

*GO-CuNPs: Graphene oxide-copper nanoparticles

Figure 1: Engineering aptamers to bind specific targets. 

Molecularly imprinted polymers (MIPs)

Various polymers are can be moulded into sensors using the 
molecular imprinting technique as this technique provides rec-
ognition site for the desired analyte.

General strategy for making as stated by Mayes and Whit-
combe [68] starts with template that interact with monomers 
using covalent bonding or by self-association. These mono-
mers later on polymerizes around the template and after that 
the template is washed off and we obtain a synthetic polymer. 
These polymers can also be used for detection of pesticides.
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Table 6: MIP based biosensors for detection of pesticides.

Type of material Pesticide detected Detection limit Principle of detection Reference

Silica nanoparticles Pyrethroid (3-phenoxybenzaldehyde) 0.1 μg mL−1 - 1 μg mL−1 Colorimetric [69]

SiO2@QDs@m-MIPs 2,4-dichlorophenoxyaceticacid 2.1 nM Fluoroscence [70]

Methacrylic acid based m-MIP Methyl parathion 1.22 × 10 −6 mg L−1 Electrochemical [71]

Photonic hydrogel film Imidacloprid 10-13 to 10-7 g.mL-1 Optical [72]

AuNPs/ERGO-SPCE* Cyhexatin 0.20 ng mL−1 Electrochemical [73]

MIP coated-QDs Cyphenothran 9.0 nmol L-1 Fluoroscence [74]

Ag-N@ZnO/CHAC# Cypermethrin 6.7 × 10−14 M Electrochemical [75]

MWCNT-MIP Lindane 1×10−10 M Potentiometric [76]

MWCNT-MIP Dicloran 4.8×10-10 mol L-1 Volatmmetric [77]

Molecularly imprinted film Methyl parathion 10-13 mol L-1 Optical [78]

* AuNPs/ERGO-SPCE: Gold nanoparticle/electrochemical reduction graphene oxide-modified screen-printed carbon electrode 
# Ag-N@ZnO/CHAC: Ag and N co-doped zinc oxide ultrasonically supported on activated carbon prepared from coconut husk

Figure 2: Schematic representation of the molecular imprinting [68].

Artificial neural networks

In order to simultaneously identify and differentiate among 
a multiple number of pesticides especially in the case of Ace 
inhibitors, ANNs can be instrumental and promising. In this an 
array of sensors is linked with an ANN.

This ANNs is a procedural data processing unit based on the 
enzymatic response pattern that depends on the concentration 
of each inhibitor in the sample [79].

Conclusions

Pesticides, although, successful in eliminating unwanted 
pests and other insects from the soil, have proven to be a 
menace for water bodies, soil quality, plant and human health. 
Hence, the need to develop adequate analytical techniques for 
their detection is indispensable. The conventional methods of 
analysis such as gas chromatography and mass spectrometry 
seem unsuitable because of their operational complexities, is-
sues in portability, inability to perform multiple sample analysis, 

time consuming nature and need for tedious pre-treatment of 
the samples to be analysed. These limitations led to the emer-
gence of alternate analytical techniques including development 
of biosensors such as enzymatic, catalytic, immune-sensing and 
whole cell biosensors based on various amperometric, conduc-
tometric and potentiometric detection techniques.

Biosensors based on nanomaterials, aptamers, Molecularly 
Imprinted Polymers (MIPs) and Artificial Neural Network (ANN) 
offer robust, stable, sensitive and specific detection of pesti-
cides along with their ability for in-situ analysis. With control-
lable structure and interface interaction properties, nanomate-
rials such as gold nanoparticles and carbon nanotubes exhibit 
unconventional and novel chemical and physical features that 
are vital for widespread future sensor applications. Gold nano-
particles based biosensors are potent candidates for screening 
pesticide residues and are becoming increasingly pertinent in 
environmental as well as food analysis because of their sensitiv-
ity, specificity, rapidity, simplicity, and cost-effectiveness.
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Figure 3: Detection of pesticides based on gold nanoparticles.
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