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Abstract

Recent advances in bioinformatics and experimental sci-
ences have expanded researchers’ capability to study the in-
teractions of genomic events in cancer with tumor microen-
vironments. These include a wide range of bioinformatics 
analyses or estimation of tumor immune cell infiltrates, 
immune activation or immune suppression activities. These 
bioinformatics tools, together with validations in the right 
in vivo models, could provide valid and important knowl-
edge to advance the understanding of immunogenomics, 
which may benefit future design of immunotherapies for 
cancers. Here, we summarize recent advancements in bio-
informatics tools for immune infiltrate estimation in human 
tumors, and emphasize on how they can be applied for the 
understanding of tumor genetic changes within the tumor 
immune microenvironment. Lastly, we will discuss several 
experimental methods to validate these immuno-genomic 
bioinformatics findings in vivo.

Yuchen Liu; Li Wang; Hoi-Lam Ngan; Vivian Wai Yan Lui*
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Introduction

There is a tremendous need in the research field to un-
derstand how the genetic events in human tumors affect the 
tumor immune microenvironment. Tumor immune microen-
vironment is defined as the immune cell components, as well 
as immune signaling events or interactions found in a tumor. 
Generally speaking, a tumor can be potentially classified as 
“immune-hot” or “immune-cold” based on the levels of im-
mune cells or their activation statuses inside the tumor. Besides 
the fact that various immune cell types can be “attracted” to 
the tumor side, these immune cells in the tumor can be “ac-
tive”, “inactive” or even “suppressed”. Their activities are usu-
ally regulated , in a very dynamic manner, by various cytokines 
secreted by the tumor cells, other tumor-associated cells, as 
well as other immune cells present in the tumor microenviron-
ment. Such a diverse array of immunological activities and the 
presence or levels of various immune cell infiltrates can only 
be analyzed with large-omics studies, such as transcriptomics 
data, which theoretically contain gene expression profiles of 

all immune cells and cells within the tumor microenvironment. 
Though recent advance in flow cytometry can allow purification 
and partial quantitation of the levels of many immune cells in 
a tumor, these immune cells, upon isolation, are nevertheless 
“removed” from the direct tumor microenvironment and may 
have change in their functional profiles compared to real in situ 
environments. There are methods under development to simul-
taneously examine many immune cell types and their activities 
on a tumor slide, yet, the number of cell types and activation 
status assessable are potentially limited currently. These new 
methods under development may help further validation of im-
munogenomics interactions in various cancers, yet, as of today, 
transcriptome (RNA-seq)-based computational methods remain 
the main ways of immune infiltrate quantification for immunog-
enomics analyses. Per large scale genomic efforts of the Cancer 
Genome Atlas (TCGA Pan-Cancer Atlas), transcriptomic data are 
already available for 33 pan-cancers [1]. Therefore, a timely re-
view of the methods or tools for transcriptome-based tumor 
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immune microenvironment for human cancers will be very use-
ful for beginners of the cancer immuno-genomic field. At the 
same time, growing knowledge on how tumor genetic events 
can shape the tumor immune microenvironment will help the 
design of new immunotherapies and likely adjuvants to en-
hance the antitumor efficacies of nowadays immunotherapies. 
Thus, we will also introduce some research methods recently 
employed by researchers to validate the bioinformatics results 
related to tumor genetic events regulating tumor immune mi-
croenvironment.

Bioinformatics tools and methods in the quantification and 
estimation of immune infiltrates in human tumors

In human, there are 6 major immune cell types, namely B 
lymphocytes, T lymphocytes, Natural Killer (NK) cells, mac-
rophages/monocytes, Dendritic Cells (DC) and neutrophils. In 
terms of activity to fight against the foreign bodies or tumor 
cells, B lymphocytes, T lymphocytes, NK cells, macrophages, 
and neutrophils are the key players. Dendritic cells are the ones 
responsible for antigen presentation. While B and T lympho-
cytes are capable of developing memories over time to target 
the same “enemy” that they were previously exposed to. While 
NK cells, macrophages and neutrophils can engulf foreign bod-
ies and eliminate them from our body. Many of these immune 
cells can release cytokines to communicate with each other and 
elicit other regulatory functions among them. There are various 
subtypes for these immune cells being characterized and each 
of them are known to elicit different specific functions in the 
immune system. In fact, as of today, there are still immune cell 
types being identified and the list will surely keep increasing in 
the near future.

In cancer, there is an increasing need to understand the tu-
mor immune landscape to facilitate the development of new 
and effective immunotherapy. Over the past decade, prompted 
by the availability of “information rich” transcriptomic data 
(RNA-seq) for over 30 cancer types by TCGA, there have been 
increasing efforts to use computational methods to dissect the 
immune tumor microenvironment in various cancers, as well 
as in individual patient tumors using these data. Several major 
computational methods have been specifically developed to es-
timate or calculate the tumor-infiltrating levels of multiple im-
mune cell types, ranging from anywhere around 6 immune cell 

types (TIMER) to as many as 64 immune and non-immune cell 
types (xCell) [2-5].

Currently, there are mainly two classes of immune cell esti-
mation methods: marker gene-based methods and deconvolu-
tion-based methods (Table 1). Maker genes methods calculate 
immune cell infiltration scores with the expression values of 
marker gene lists that characterize respective immune cell types. 
The marker gene lists are extracted from multiple immune cell 
RNA-Seq datasets, extensive literature reviews and most likely 
are experimentally validated. The single sample Gene Set En-
richment Analysis (ssGSEA) developed by Hanzelmann et al. in 
2013, [6] and its extension, xCell [3] are the most widely-known 
marker gene-based methods. Both methods calculate the en-
richment scores for marker gene pre-defined cell types. ssGSEA 
is a simple technique that can calculate the enrichment score of 
any genesets, including immune genesets, in a simple sample 
according to the ranking of their expression levels. The xCell 
method defines gene signatures (marker genes) for as many as 
64 cell types (of which 62 are immune cells or immune cell pro-
genitors, 2 are fibroblast and endothelial cells), calculates and 
adjusts the ssGSEA scores of all these cell types. The ssGSEA 
score adjustment will transform the scores to linear scales and 
avoid the mixture of closely related cell types. Earlier tumor im-
mune infiltrate estimation has employed ssGSEA and character-
ized the immune landscape in Head and Neck Squamous Cell 
Carcinoma (HNSCC) [7], clear cell renal cell carcinoma [8] and 
breast cancer [9]. In 2016, Becht et al. developed the Microenvi-
ronment Cell Populations-counter (MCP-counter) method [10], 
which is another marker gene-based method for immune cell 
quantification of 8 immune cell types, cytotoxic score as well 
as fibroblasts and endothelial cells within the tumor microen-
vironment. This method generates an MCP-counter score by 
calculating the log2 geometric mean of marker genes for each 
immune cell types. In principle, the three major marker gene 
methods can quantify each immune cell type individually, and 
prevent possible signal spill over by modifying the marker gene 
list. However, there exists major caveat that all the marker-gene 
based methods could only generate semi-quantitative scores 
instead of exact immune cell fractions within a tumor, thus the 
scores could only be compared between samples semi-quanti-
tatively. These methods cannot be used to compare the quanti-
tative levels of different immune cell types within one sample.
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The second class of computational methods are the deconvo-
lution methods. For deconvolution methods, the gene expres-
sion profile of a single sample is considered as the convolution 
of the gene expression of different cell types, and the decon-
volution methods estimate the fraction of each immune (and 
non-immune) cell types in a sample through regression with cell 
type-specific signature matrix or expression profile. Cell-type 
Identification by Estimating Relative Subsets Of RNA Transcripts 
(CIBERSORT) [11], CIBERSORT Absolute mode (CIBERSORT-ABS) 
[12], Tumor Immune Estimation Resource (TIMER) [2,4,5], Esti-
mating the Proportion of Immune and Cancer cells (EPIC) [13] 
and quantification of the Tumor Immune contexture from hu-
man RNA-seq data (quanTIseq) [14] are the recently developed 
methods with different deconvolution algorithms (detailed in 
Table 1). 

CIBERSORT is the most widely used deconvolution method 
with ν-support vector regression algorithm. It can estimate as 
many as 22 immune cell types and calculate the relative im-
mune cell fraction within a patient tumor. However, the results 
of CIBERSORT can only be used for comparison of levels of vari-
ous immune cell types within a single sample, but not meant 
for comparisons across different samples [11]. The results are 
expressed as fractions relative to total immune-cell content 
within a single sample. An extension of CIBERSORT, known as 
CIBERSORT-ABS (absolute mode of CIBERSORT) was developed 
in 2018 by Chen et al. [12] to allow comparisons of levels of 22 
immune cell types both within one sample, as well as between 
samples. The results of CIBERSORT-ABS are scores that reflect 
the absolute proportion of immune cell types. 

TIMER, developed by Li et al., was the first, and still the only 
method by now that takes tumor purity into account when es-
timating the abundancy levels of immune cell infiltrations. In 
this method, the immune marker genes are selected dynami-
cally according to the tumor purity of the input sample, that 
the immune genes whose expression levels are negatively cor-
related with tumor purity are considered as immune markers. It 
uses the linear least regression method for deconvolution with 
reference sample (immune cell line) expression datasets for 6 
immune cell types (B cell, CD4+T cell, CD8+T cell, neutrophil, 
macrophage and myeloid dendritic cell). The results of TIMER 
are in arbitrary unit and only comparable between samples of 
the same cancer type [2,4,5]. 

Two other deconvolution methods, EPIC and quanTIseq, 
both perform constrained least square regression to calculate 
immune cell fractions with immune cell signature gene expres-
sion matrix (signature matrix). The main difference between 
EPIC and quanTIseq is that EPIC can calculate the abundances 
of 5 immune cell types, fibroblasts and endothelial cells, while 
quanTIseq calculates the levels of 10 immune cell types. Since 
both methods estimate the absolute immune cell fraction in a 
sample, they can be utilized for comparisons of various immune 
cell types within one sample, as well as for samples within the 
same cancer types or even across cancer types [13,14]. 

A comprehensive analysis using single cell RNA-seq datasets 
to simulate bulk RNA-seq data has been performed to assess 
and compare the accuracy of different immune cell estimation 
methods [15]. Moreover, the experimental gold standard (fluo-
rescence-activated cell sorting and immunohistochemistry) to 

evaluate immune cell infiltrations has also been included in this 
study. In general, the deconvolution methods are more accu-
rate for well-defined immune cell types, while the marker gene-
based methods show lower background prediction (background 
prediction means a false positive prediction when an immune 
cell type is actually absent from a tumor but the computational 
method turns out to predict its presence) and more suitable for 
absence/presence prediction. Therefore, for a simple present 
or absent calculation of various immune cell types, one can sim-
ply employ MCP-counter and xCell. For a more reliable quan-
titative comparison within the same cancer type, CIBERSORT, 
CIBERSORT-ABS, TIMER, EPIC and quanTIseq could be used. 
While for cross cancer type comparisons, CIBERSORT-ABS, EPIC, 
quanTIseq, xCell and MCP-counter are more suitable. Many of 
these methods are supported by user-friendly online tools and 
they can be accessible for online analysis in very simple ways: 
The respective websites are listed here: CIBERSORT/CIBERSORT-
ABS (https://cibersort.stanford.edu/), TIMER (http://timer.cis-
trome.org/), EPIC (http://epic.gfellerlab.org) and xCell (https://
xcell.ucsf.edu/).

As mentioned above, currently, we can use multiple com-
putational methods (or even open tools) available for the es-
timation of immune cell infiltration abundance for different 
scenarios or comparisons. However, these methods are still not 
perfect. The marker gene-based methods (xCell and MCP-coun-
ter) only generate semi-quantitative scores that represent the 
enrichment of cell types, but not the real immune cell fractions 
within a sample, and the deconvolution methods (CIBERSORT, 
CIBERSORT-ABS, TIMER, EPIC and quanTIseq) have the back-
ground prediction problem especially for the low-abundance 
cell types. So in the future, it would be ideal to develop the new 
marker gene based-algorithm that could estimate immune cell 
fractions directly. Vice versa, to overcome the low abundance 
immune cell estimation problem in deconvolution method, it 
would be important to refine reliable signature matrix to avoid 
possible false-positive background calculation. Furthermore, 
with the emergence of even more new immune cell subtypes or 
subtypes with various activation statuses, new methods for the 
estimation of even a wider variety of immune cell types with 
various activation statuses should be developed.

Immune-related scores in the estimation of immune-hot-
ness of a tumor 

Tumors with higher immune cell infiltration levels are known 
as the “immune hot” tumors. Emerging clinical findings in the 
area of immunotherapy showed that patients whose tumors are 
heavily infiltrated with immune cells, in particular, CD8+T cells, 
appeared to have higher response rates to Immune Checkpoint 
Inhibitor (ICI) treatment (Table 2) [16]. The reason is the pres-
ence of high levels of immune cell army, especially those that 
can efficiently eradicate tumor cells, can elicit effective antitu-
mor responses at the tumor site once the anti-immune suppres-
sive immune checkpoint signals are removed by ICI [17]. Thus, 
there exists an important and practical need to help define an 
“immune hot” tumor in clinical setting. As for cancer biology, 
unlocking the molecular or pathologic reasons that drive the 
shaping of the immune-hotness of a tumor can promote our 
understanding of human tumorigenesis and cancer progres-
sion.



Immune-related score Gene used in calculation (If applicable) Algorithm Source

IFNG-score

6-gene score IDO1, CXCL10, CXCL9, HLA-DRA, STAT1, IFNG
weighted arithmetic mean of gene expression 
(TPM or quantile normalized, log10 transformed 
raw counts)

[43]
18-gene score

CD3D, IDO1, CIITA, CD3E, CCL5, GZMK, CD2, 
HLA-DRA, CXCL13, IL2RG, NKG7, HLA-E, CXCR6, 
LAG3, TAGAP, CXCL10, STAT1, GZMB

Cytolytic score (CYT) GZMA, PRF1 geometric mean of gene expression (offset 0.01) [44]

Cytotoxic score
CD8A, EOMES, FGFBP2, GNLY, KLRC3, KLRC4, 
KLRD1

mean of marker gene expression 
MCP- 

Counter [10]

T-effector (T-eff) score GZMA, GZMB, PRF1, IFN-γ, EOMES, and CD8A geometric mean of gene expression (offset 0.01) [45]
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Table 2: Summary of immune checkpoint molecules.

Classification Immune checkpoints Binding parters Reference

Inhibitory checkpoint molecules

PD-1 PD-L1/PD-L2 [18]

CLTA-4 B7-1/B7-2 [19]

? B7-H3 [20]

? B7-H4 [21]

VISTA ? [22]

TIM-1 ? [23]

TIM-3 CEACAM1 /Galectin-9 [24]

LAG-3 MHC [25]

BTLA HVEM [26]

CD160 HVEM [27]

LIGHT HVEM [28]

CD47 SIRPα [29]

2B4 (CD244) CD48 [30]

KIR MHC Class I [31]

IDO ? [32]

Stimulatory checkpoint molecules

TCR MHC [33]

CD40L (TNFSF4) CD40 [34]

OX40 OX40L [35]

ICOS ICOSL [36]

GITR GITRL [37]

CD28 B7-1/B7-2 [38]

CD27 CD70 [39]

4-1BB 4-1BBL (TNFSF9) [40]

? B7-H3 [41]

Currently, there are several immune-related scores being uti-
lized for the estimation of immune-hotness of a tumor (Table 
3). Some of which are based on the knowledge that key anti-
tumor cytokines, such as IFN-γ, are crucial for the activation of 
anti-tumor immune cells, including NK cell, Cytotoxic T cell and 
DC [42]. Whilst others examined immune-related genes to look 
at the levels of genes essential for eliciting anti-tumor cytolytic 
activity by T cells.

Table 3: Summary of immune-related scores.



mune “hot” or “cold” tumors in different cancer types. Thus, 
further systematic analysis may be required to clarify the clas-
sification or definition of immune-hotness with these scores in 
pan-cancers.

Somatic mutations shaping tumor immune microenviron-
ment 

The current ICI has shown good clinical efficacy in a wide 
range of cancer types, demonstrating success of cancer immu-
notherapy. Though the response rate is currently around 20% 
in most cancer, it nevertheless, represents a new direction for 
anticancer therapy, especially for patients who exhausted treat-
ment options. In general, Programmed death-ligand 1 (PD-L1) 
expression in tumor cells and Tumor Mutation Burden (TMB) 
are considered as clinical biomarkers for the use of ICIs. How-
ever, these biomarkers are far from predictive of ICI clinical 
outcomes in patients as reported by many. This is likely due to 
multifactorial involvement at the tumor immune microenviron-
ment which enables ICIs to elicit good antitumor responses in 
patients [49]. For instance, the immunogenicity of the tumors, 
which affects the tumor immune microenvironment, can po-
tentially influence ICI treatment outcomes. Recently, emerging 
efforts in the field of immunogenomics are trying to identify 
and discover genomic determinants that can shape a patient’s 
tumor immune microenvironment. These studies could help 
identify clinically effective peptides or neo-antigens which can 
shape or prepare the tumor immune microenvironment of a 
patient to potentially increase the antitumor efficacy of ICIs in 
cancer patients, By integrating the tumor immune infiltration 
levels, or the immune-related scores with a single gene muta-
tion or multiple mutations of question, one can determine the 
association of genetic events with the TIL levels and immune-
related scores introduced above. With further validations in 
animals, one can then confirm the immune activating or tumor 
immune microenvironment-shaping ability of these peptides 
or neo-antigens. Here, we summarize some recently identified 
genetic mutations that have been found to be correlated with 
tumor immune microenvironment activities. 

Mitogen Activated Protein Kinase (MAPK) pathway muta-
tions have recently been reported to cause marked tumoral 
infiltration of several anti-tumor lymphocytes in HNSCC. These 
include: CD8+ T cells, dendritic cells and neutrophils [46]. More-
over, significantly enhanced T cell-related cytolytic immune 
response gene signatures were observed in MAPK pathway 
mutated vs wild type HNSCC tumors, suggesting active T cell 
recruitment and activity in MAPK pathway-mutated HNSCC tu-
mors. The study further validated in immunocompetent HNSCC 
mouse models that the mouse equivalences of human HRAS 
p.G12V mutation and MAPK1 p.E322 and p.D321 mutations 
could directly recruit CD8+ T cell infiltration into the HNSCC tu-
mors, and cause increased apoptosis of tumor cells. Of note, 
two independent pan-cancer ICI cohorts showed that MAPK 
pathway mutated patients appeared to have better clinical out-
comes upon ICI treatments. This study suggested that MAPK 
pathway mutations could shape a T cell-inflamed immune mi-
croenvironment in HNSCC, which may potentially benefit T-cell-
based immunotherapies. These findings warrant future clinical 
investigations in related immunotherapy settings.
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Immune score NA sum of all immune cell types calculated in xCell xCell [3]

microenvironment score NA
sum of all immune and stromal cell types 
calculated in xCell

xCell [3]

IFN-γ is secreted by activated T cell, NK cell and Natural Killer 
T (NKT) cells. It plays a critical role in stimulating CD4+ T helper 1 
cells, CD8+ cytotoxic T cell, NK cells, DCs and macrophages and 
inhibition of regulatory T cells (Treg), CD4+T helper 2 cells and 
Th17 cells in the antitumor processes [42]. To define immune-
related gene expression signature associated with response to 
pembrolizumab (PD1 inhibitor), IFN-γ signaling was found. Thus, 
IFN- γ score was developed [43]. The 6 gene and extended 18 
gene IFN- γ scores have been validatd in HNSCC [46] and gastric 
cancer [43] that tumors displaying high IFN-γ scores are asso-
ciated with statistically significant improved patient prognosis, 
respectively [43,46], and the IFN- γ scores could predict better 
anti-PD-1 therapy response [43].

Activated CD8+ T and NK cells will elicit tumor cell lysis, thus 
achieving antitumor acitivity in a patient. The cytolytic (CYT) 
score which indicates cytolytic activity of infiltrated immune 
cells has been develped by Rooney et al. [44]. This score was 
first utliized to identify genetic abberations (amplification and 
recurrent mutations) that positlvely associated with cytolytic 
activity. CYT scores are strongly associated with cytolytic lym-
phocytes markers as expected. Moreover, high CYT-score alone 
could predict better patient outcome in pan-cancer, as well as 
in HNSCC [44,46]. 

The effector T-cell signature (T-effector score), which was first 
developed by Bolen et al.. It can reflect functional immune re-
sponse elicited by CD8+T cells [45]. This T-effector score is com-
puted based on the expression levels of GZMA, GZMB, PRF1, 
IFNG, EOMES and CD8A genes in a tumor. Among which, GZMA, 
GZMB, PRF1 are genes that are upregulated for anti-tumor re-
sponses elicited by CD8+T cells. Several studies has employed 
this T-effector score. In melanoma, the T-effector score was 
found to be highly correlated with Tumor-Induced Plasmablast-
like-enriched B cell population (TIPB) signature [47]. In pan-can-
cers, this score was found to be closely associated with a tumor-
infiltrating B cell marker, GPR18 expression, which indicated a 
functional crosstalk between GRP18 and effector T cells in as 
many as 28 cancer types, including HNSCC, lung, liver, kidney 
and breast cancers [48].

In addition to the above three immune activity scores, sev-
eral other immune cell infiltration estimation methods, such as 
MCP-counter and xCell can also calculate cytotoxic score and 
immune/microenvironment scores. The cytotoxic score calcula-
tion in MCP-counter is based on the geometirc mean of CD8A, 
EOMES, FGFBP2, GNLY, KLRC3, KLRC4 and KLRD1 expression 
levels, which represents the cytotoxic lymphocyte levels in a 
patient tumor [10]. In xCell, the immune and microenviroment 
scores are the sum of all immune cell types and all immune 
and stromal cell types, respectively [3]. These immune-related 
scores may help identifying “immune hot” tumors vs. “immune 
cold” tumors for clinical and preclinical settings.

The IFN-γ, CYT, T-effector scores, as well as the cytotoxic 
scores are simple mathematical or geometric means of short 
gene lists. They are easily to be used for multiple purposes, 
such as for the prediction of tumor hotness and ICI treatment 
response with limited gene expression data (instead of whole 
set of RNA-Seq data). However, these immune scores also have 
their limitations, e.g. unclear cutoffs for a clear definition of im-



The immunogenicity of MAPK pathway mutations in HNSCC 
is further supported by a study by Lyu et al. The author reported 
that HRAS mutated HNSCC tumors were associated with higher 
expression of HLA-genes, CD8+ T cell marker, and cytolytic/pro-
inflammatory markers including granzyme B and perforin 1 when 
compared with wild type [50]. The study further identified that 
TP53–mutated HNSCC tumors were associated with reduced 
expression of Human Leukocyte genes (HLA) genes (including 
HLA-DOA, HLA-DOB, HLA-DRA, HLA-DMA, HLA-DMB, HLA-DRB1, 
HLA-DRB5, HLA-DRB6, HLA-DQB1, HLA-DQB2, HLA-DQA1, HLA-
DQA2, HLA-DPA1, HLA-DPB1, HLA-DPB2), tumor-infiltrating 
markers (including B cell, CD8+ T cell and NK cell markers), as 
well as the cytolytic markers indicative of an “immune-cool” 
microenvironment. Whilst HRAS-mutated HNSCC appeared to 
have increased HLA expressions (including HLA-F, HLA-C, HLA-J, 
HLA-DQB1, HLA-DRB5, HLA-DPA1, HLA-DRB1, HLA-DOB, HLA-
DMA, HLA-DRQ, HLA-DRBB, HLA-DQA1, HLA-DPB1).

In colorectal cancer, Tran et al. showed that mutation of one 
of the MAPK pathway genes, KRAS p.G12D mutation, represent-
ed a neo-epitope well-recognized by HLA-C*08:02 allele, thus 
recognized by HLA-C*08:02-restricted tumor-infiltrating lym-
phocytes with demonstrated specificity against such a muta-
tion [51]. Interestingly, subsequent in vivo experiment showed 
that tumors that progressed with infusion of these neo-antigen 
specific lymphocytes had further acquired the loss of chromo-
some 6 event that corresponded to HLA-C*08:02 (Class I MHC 
molecule), thus resulting in immune evasion. In gastrointestinal 
cancer, Li et al. found that in stomach cancer and colon cancer, 
ARID1A mutations were associated with significant increases 
in tumoral infiltrations of CD8+T cells, NK cell, activated CD+4 
cells, and activated dendritic cells, as well as increased in cy-
tolytic activity as revealed by ssGSEA. These ARID1A-mutated 
tumors also displayed elevated PD-L1 expression, and appeared 
to demonstrated favorable responses with immune-checkpoint 
inhibitors [52].

The impact of mutational landscape on tumor immune mi-
croenvironment in lung cancer is well-studied. KRAS mutations 
represent common driver mutations in Non-small Cell Lung 
Cancer (NSCLC) and indicates poor prognosis. Recent clinical tri-
als identified that this subgroup of KRAS mutated tumors were 
actually more responsive to ICIs then conventional chemothera-
pies [53]. Many studies demonstrated that these KRAS mutated 
tumors are associated with increased PD-L1 expression, CD8+ 
T cell/CD66b+ cell infiltration and immune signature expres-
sion [54,55]. However, robust efficacy of ICIs on patients with 
specific KRAS mutations are still to be fully elucidated in clinical 
settings (KEYNOTE-042) [55]. Further genomic characterization 
identified that when a loss-of-function mutation of STK11/LKB1 
gene was found to be co-mutated with the KRAS gene, PD-L1 
downregulation was observed, causing resistance to ICI in KRAS 
mutated lung cancer [56,57]. The clinical relevance of these 
findings is still being examined carefully at the moment. While 
KRAS and TP53 co-mutations were associated with higher PD-L1 
expression, PD-1 expression, CTLA-4 expression, higher infiltra-
tion of CD3+/CD8+/CD45RO+ lymphocytes and high TMB predict-
ing better ICI outcomes [56,58]. TP53 mutation alone in lung 
cancer can also drive upregulation of T-effector and interferon-γ 
gene signatures reflecting the immune-reactive nature of the 
TP53 mutant tumors [58]. These studies demonstrated the 
complex interplay of co-mutated genomic events that heavily 
modulate the tumor immune microenvironment, can influence 
patient response to ICIs. Besides, NOTCH1/2/3 mutations are 
associated with anti-tumoral M1 macrophage infiltration, CD4+ 
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T cell/CD8+ T cell/NK cell activation as well as enhanced antigen 
processing/antigen presentation signatures and can help pre-
dict ICI response [59]. Of note, the immuno-active phenotype is 
not observed in NOTCH4 mutated NSCLC tumors. 

In melanoma, loss-of-function mutations of ATR gene were 
found to trigger infiltration of pro-tumorigenic M2 macrophage, 
reduction of CD4+ T cells and upregulation of PD-L1 expression 
[60]. BRAF p.V600E/K mutations are common driver mutations 
in melanoma. Using in vivo models, Chen et al. demonstrated 
that upon combination therapy of BRAF inhibitor and MEK in-
hibitor, immune competent mice with BRAF p.V600E mutant 
tumors survived longer than those in immune compromised 
NOD/SCID gamma (NSG) mice, and such a good response to the 
combination therapy appeared to be associated with immune-
stimulatory cell death of BRAF p.V600E mutated melanoma (i.e. 
immunogenic pyroptotic cell death) [61]. This was one of the 
first reports demonstrating drug-induced cell death of tumors 
in active shaping of the tumor immune microenvironment.

To conclude, the somatic mutations accumulated during 
tumor evolution can heavily modulate the tumor immune 
microenvironment by regulating the expression of PD-L1, im-
muno-active gene signatures as well as TILs infiltration. The 
immune-modulating effects of different somatic mutations may 
outweigh each other when co-occurred within the same tumor. 
Owing to the heterogeneity nature of a tumor, a single genomic 
mutation, in some cancers or some individuals, may not be a 
strong enough immunostimulant or neo-antigen. Therefore, 
more efforts are required to identify the immuno-modulating 
effects of somatic mutations of human tumors. Nevertheless, 
the currently identified immuno-modulating somatic mutations 
do serve as essential clues to study genomic influences on im-
munotherapy responses in patients. In the future, comprehen-
sive genomic characterization of a patient tumor may facilitate 
actual precision use of immunotherapies for patients. 

Methods of validation for immuno-genomic interactions in 
vivo

Over the years, various methods have been developed to de-
termine the immunogenicity of a specific protein sequence, or 
a specific gene. The protein sequence or gene of interest can 
be derived from hypothesis-driven approaches by investigators, 
or by in silico (computational) prediction of antigenic peptides. 
The peptide or DNA vector expressing the gene of interest will 
be then delivered into an immunocompetent mouse model, 
such as that of C57BL/6, or into autologous antigen-presenting 
cells co-cultured with patient-derived T cells, to see if such 
peptides or genes would mount an antigen-specific immune 
response (Figure 1). Successful mounting of an anti-neoanti-
genic response will result in the production of cytokines (e.g. 
IFN-γ, TNF-α) and an antigen-specific CD8+T cell response upon 
neoantigen re-exposures. This can be quantitatively measured 
by Enzyme-Linked Immunospot assay (ELISpot) [62] or by intra-
cellular cytokine staining followed by measurements with MHC 
multimer assays (an assay which helps identifying antigen-spe-
cific T cells by quantifying the antigenic peptide-MHC tetramer/
pentamer-TCR complex formation) [63]. In addition to these 
standard methods, sequencing and analysis of the cognate T-
Cell Receptors (TCR) can also be applied for the identification of 
clonal T cell responses to neo-antigens [64]. Using these meth-
ods, studies have validated a variety of neo-antigens, such as 
MTFR2 p.D326Y, CHTF18 p.L769V and MYADM p.R30W for non-
small cell lung cancer [65], B-RAF p.V599E mutation for mela-
noma [66], TP53 p.Y220C and TP53 p.G245S for ovarian cancer 
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[67], KRAS p.G12D and ERBB2IP p.E504G for metastatic colon 
cancer and cholangiocarcinoma [51]. More importantly, to fur-
ther confirm the anti-tumor immunogenicity of a neoantigen of 
interest, mice could be prophylactic vaccinated with the neoan-
tigenic peptide prior to tumor implantation to determine wheth-
er the neoantigen-specific immune response could protect the 
animals from tumor establishment. Furthermore, co-cultures of 
neoantigen-activated T cells with neoantigen-expressing cancer 
cells can also be used to determine cytolytic activity of T cell 
towards the cancer cells expressing the neoantigen in question 
[68]. Another approach is Adoptive Cell Transfer (ACT) thera-
py, which utilizes purified neoantigen-reactive CD4+T cells and 
CD8+ cytotoxic T cells which have been genetically engineered 
to express tumor-reactive TCRs or Chimeric Antigen Receptors 
(CAR) to help these antitumor immune cells reaching the tumor 
cells more effectively, thus eradicating the tumor [69]. Recently, 
Trans et al. have shown that CD8+ T cells specific to KRAS p.G12D 
mutation could result in a nearly complete tumor regression in 
metastatic colon cancer [51].

Figure 1: Overview of identifying and evaluating the immuno-
genicity of candidate neoantigens.

     Whole-exome sequencing data and RNA-sequencing data from 
patient tumor and blood were obtained to identify and predict 
the candidate neoantigen of interest. Tandem minigenes inserted 
in DNA vector or synthesized peptides for candidate neoantigen 
could be expressed in Antigen-Presenting Cells (APCs) or immu-
nocompetent mice. T cells from patients’ tumor or blood, or from 
the splenocytes of vaccinated mice can be co-cultured with autol-
ogous APCs pulsed with neoantigen peptides to identify antigen-
specific T cells using enzyme-linked immunospot (ELISpot) assay, 
intracellular cytokine staining, or peptide-MHC multimer assay. 
The antigen-reactive T cells could then be sequenced to identify 
the antigen-specific T-Cell Receptor (TCR). Candidates are then 
selected to generate neoantigen-based cancer vaccine or develop 
TCR-engineered adoptive T-cell transfer therapy, which could be 
applied in immune competent mice or patients to assess the T cell 
response. Successful immunogenic candidate-based therapy can, 
theoretically, achieve tumor rejection.

It is of increasing realization that the antigenic nature of a 
gene or a mutant gene does not only lie in the protein sequence 
itself. In fact, the biological activity of a wild type or mutant 
gene or protein could also contribute to its ability to shape the 
tumor immune microenvironment. This is exemplified by recent 
discovery of an array of immune checkpoint molecules, such as 

PD-L1, PD-L2, Galectin-9, VISTA, B7-H3, B7-H4, B7-1, B7-2 and 
MHC on tumor cells or antigen-presenting cells in the tumor 
could shape and set the tone of immunoactive or immunosup-
pressive state in a tumor [18-22,24,25,33-38,40,41,70]. A list of 
those immune checkpoint molecules and their interacting part-
ners are shown in Table 2. These molecules, upon interaction 
with their respective binding partners, will elicit immune sup-
pressive action in the tumor. It was hypothesized that gene am-
plification or overexpression of PD-L1, for example, could cause 
immunosuppression in situ. In fact, an experimental validation 
has been performed to demonstrate that when PD-L1 overex-
pressed tumor cells were introduced into mice, it will cause im-
munosuppression by inducing T-cell apoptosis [71]. Conversely, 
overexpression of immune activating genes, mostly antitumor 
cytokines, such as IL-2 and IL-12 could result in increased im-
munogenicity against cancer, validated in vivo [72-74]. 

Most recent findings also highlighted an increasing number 
of unconventional signaling molecules regulating the tumor 
immune microenvironment. For example, in HNSCC, an ErbB3 
(HER-3) analog peptide with a 73% amino acid homology to 
ErbB3 amino acid 872-866 (peptide sequence: KTPIKWMALESI-
HFG) has been demonstrated to induce CD4+T-cell response 
which directly recognize and kill HNSCC cells [75]. In breast can-
cers that express HER2, they have been found to be associated 
with tumoral infiltration by FoxP3+ regulatory T cells, suggesting 
the presence of an immunosuppressive environment in these 
tumors [76]. N-MYC amplification has also been demonstrated 
to be associated with reduced T-cell infiltration and suppressed 
interferon pathway activity in metastatic neuroblastoma [77]. 
Similarly, in pancreatic ductal adenocarcinoma, amplification of 
FGFR1, NOTCH2 and MYC have all been shown to be associated 
with suppressed cytotoxic T cell function [78]. Furthermore, NF1 
deficiency has also been reported to be linked with increased 
levels of macrophages in glioblastoma [79]. All these recent 
findings reveal the need for better modeling of the entire gene/
protein, entire mutant gene/protein, perhaps not just a peptide 
stretch. Therefore, to validate such an immunoregulatory ac-
tivities of a gene/protein-of-interest, one would be required to 
express the entire protein in a cellular context relevant to the 
tumor type under study.

Due to the increasing knowledge on how a specific gene or 
a specific mutation could cause changes in a tumor microenvi-
ronment, there is a demanding need to engage immunocom-
petent tumor models as they largely mimic immune response 
patterns in humans (Figure 2). Although the tumors carried by 
these models are not directly derived from human, these mod-
els do carry syngeneic tumors of the same tumor type under 
investigations. For instance, C3H/HeJ syngeneic immunocom-
petent mouse model has recently been utilized to validate 
the immunoreactive effect and CD8+T cell-attracting activities 
of MAPK pathway mutations when transplanted with an engi-
neered mouse HNSCC cell line SCCVII [46]. The immunogenicity 
and specificity of multiple genetic events (e.g. Tubb3 p.G402A, 
Kif18b p.K739N, Mthfd11 p.F294V, Gnas p.S112G and Tm9sf3 
p.Y382H) from B16F10 mouse melanoma cells have been ex-
perimentally validated in C57BL/6 mice [80]. Using syngeneic 
FVB/n mice, Noblitt et al. showed that MT1A2 cells infected 
with EpherinA1 failed to form tumors in those mice, validating a 
role of EpherinA1-EphA2 complex in inhibiting the tumorigenic 
potential of breast cancer [81]. The advantage of using immu-
nocompetent syngeneic mouse models easy experimentation 
with reproducible results. However, the fast kinetics of tumor 
growth of many of these syngeneic mouse tumor models often
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Figure 2: The process for validating the immunoregulatory role 
of candidate genetic events with different mouse tumor models. 
	
     First, specific DNA vectors for the generation of the candidate 
neo-antigenic genetic events (e.g. overexpression, mutation, sup-
pression or deletion of candidate gene) are constructed and trans-
ferred into cells through virus infection or electroporation. The en-
gineered cells will then be selected and injected into three major 
different mouse models. Syngeneic tumor models are generated 
by transplanting the engineered mouse cancer cell into immune 
competent mice (e.g. C57BL/6, C3H). Genetically engineered tu-
mor models are generated by specific modification of the genome 
of the immunocompetent mice usually at the zygote stage, which 
will be implanted into the uterus of a pregnant mouse. Sponta-
neous tumors can be observed in various stage of development 
of the newborn mice. Potentially, tissue specific gene expressions 
or inducible gene expressions can be achieved using tissue-spe-
cific promoters or inducible promoter (e.g. tetracycline-inducible 
promoter) driving gene expression and tumor formation. For the 
humanized tumor model, the human immune system could be es-
tablished in the mice by injecting purified human peripheral blood 
mononuclear cells or hematopoietic stem cells into immune com-
promised NOD/SCID/IL2Rγ (NSG) mice. After that, the human can-
cer cells or human patient-derived tumor could be transplanted 
into the NSG mice. To investigate the immune response induced by 
the candidates, the mouse blood or spleen could be collected for 
ELISA assay for various cytokine measurements, tumor collected 
for cytokine staining and Tumor Infiltrating Lymphocyte (TIL) profil-
ing with specific antibodies. In addition, the in vivo tumor growth, 
mouse survival rate as well as their response to drug treatment 
can be monitored.

prohibit the observation or evaluation of the full effectiveness 
of immunotherapy at earlier stages of tumor development. 
Moreover, the syngeneic mouse models, largely being engi-
neered models, often lack the true genomic heterogeneity of 
the human tumors and the related microenvironment, making 
them not-yet-ideal in predicting immunotherapy responses. 

Genetically Engineered Mouse Models (GEMMs) that can 
intrinsically mimic the process of tumorigenesis or tumor pro-
gression upon manipulation of certain cancer-related gene(s) 
are also important tools for the evaluation of how tumor genet-
ics may affect the tumor immune landscape [82]. For example, 
Kras p.G12D; Trp53 p.R172H mutant mouse is found to develop 
pancreatic tumors through JAK2-STAT3-dependent immune eva-
sion [83], indicating that mutant p53 could shape the tumor mi-
croenvironment. A breast cancer GEMM with Mouse Mammary 
Tumor Virus (MMTV) promoter -driving expression of HRAS and 
MYC genes, mimicking co-amplification event, was found to re-
sult in accelerated formation of mammary adenocarcinomas 
compared to un-engineered control, and single gene amplified 
KRAS or MYC models [84]. Recently, CRISPR/Cas9-mediated ge-
nome editing has been employed for the generation of GEMMs 
for various cancers such as invasive lobular breast carcinoma 
[85] and lung cancer [86], suggestive of a powerful platform 
for rapid in vivo validation of loss of candidate tumor suppres-
sors and multigenic cancer genomic events. As GEMMS devel-
op tumors in a natural immune-proficient microenvironment, 
GEMMs allow the study of many immune-related processes in 
vivo, including immune tolerance, immune-editing and/or im-
munosuppression [82]. The ability to study the involvement 
of immunity in multi-stage tumor development is an obvious 
advantage of GEMMs compared to syngeneic tumor models. 
Importantly, since in GEMMs, the tumors are often developed 
spontaneously over time, the tumors developed appear to 
represent heterogeneous tumors as in human patient tumors, 
which will allow the investigations of the immunogenomics in-
teractions between the tumor genetics and the immune system 
in vivo. 

Lastly, another widely used model for immunology and 
therapeutic studies are the humanized mouse models. The hu-
manized NOD SCID gamma (NSG) mouse models allow both the 
implantation of human tumors as well as immune cells from 
human. These NSG mice themselves are deprived of T cell, B 
cell with extremely low NK cells due to the loss-of-function mu-
tation of Prkdc and null mutation of IL2Rγ in NOD/ShiLtJ back-
ground [87]. Yet, human immune cells such as human T cells 
and CD34+ Hematopoietic Stem Cells (HSC) can be purified 
from patients directly, gene-modified and being re-introduced 
into the mice. The humanized mouse models can be used for 
the assessment of therapeutics using patient’s tumor and im-
mune cells (of the same patient or from other human donors), 
creating a more humanized tumor immune microenvironment 
relevant to the treatment under investigation. For instance, 
the NSG mice bearing human solid tumors have been used to 
evaluate the therapeutic effect of anti-CD47 antibody in blad-
der cancer, breast cancer and liver cancer [88]. The engraftment 
of MYC p.T58A and BCL2 overexpressing human HSCs into NSG 
mice led to rapid development of B-cell lymphomas, validating a 
combined role of MYC and BCL2 in producing B-cell malignancy 
[89]. Infection of HSC-engrafted NSG HLA-A2- transgenic mice 
with Epstein-Barr Virus (EBV) has led to HLA-A2-restricted CD8+ 
T cell-mediated immune protection against EBV, suggestive of a 
model mimicking the pathological effects of EBV infection in B 
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cell lymphoma in human [90]. The main advantage of human-
ized NSG models is that they can be used as a preclinical whole 
animal testing for immunotherapy efficacy studies such as gene 
therapy and for assessing new vector technologies in vivo since 
they provide a “humanized” immune response with human im-
mune cells. However, a big challenge of using this model to es-
tablish a full human chimera is that the human granulocytes, 
platelets and red blood cells are not able to circulate appropri-
ately in the murine host and their life-spans are limited in the 
grafted host (NSG mice). Other practical disadvantages include 
the relatively high cost of labor and time for the generation of 
these models. There are also reported problems of spontane-
ous murine tumor formation not of human tumor origin, such 
as the noted formation of murine lymphoma of a B-cell subtype 
positive for EBV and mammary tumors, in NSG mice when they 
were transplanted with patient-derived tumors [91]. Therefore, 
great care needs to be taken to ensure human origin of the tu-
mor model when NSG mice are used. 

Though each of these mouse models appears to have their 
respective advantages and disadvantages, nevertheless, they 
are useful in vivo models which can help addressing various 
immunogenomics questions in cancer, such as validating the 
immunogenicity of candidate neoantigen, investigating the im-
munomodulating effect and deciphering the underlying mecha-
nism of candidate genetic events, as well as evaluating the ef-
fectiveness of immunotherapy.

Conclusions

There are arrays of bioinformatics tools, and biological meth-
ods to examine and determine how the tumor immune microen-
vironments are for each cancer type, or even each tumor. How 
these immune activities within each tumor are being shaped, 
especially by aberrant gene expression of mutations in each tu-
mor will inform us the mechanism of tumor immune shaping, 
as well as immunotherapy design for individual patient tumor. 
With our expanding knowledge on tumor immunity and im-
munotherapy responses in patients, it is envisioned that more 
advanced tools, likely based on improvements of the current 
algorithms, can help address more diverse questions in the im-
munogenomics field. The anticipated identifications of immune 
cells at single cell RNA-seq level would definitely impact our 
understanding of the complexity of multi-immune cell involve-
ment in the tumor immune microenvironment. 
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