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Abstract

Epilepsy is one of the most common nervous diseases, 
which occurs unconsciously and unpredictably due to the 
brain transient disorders. In this paper, deep neural net-
works is used to predict epilepsy attacks thorough simul-
taneous use of EEG signals and Heart Rate Variability (HRV) 
analysis on a public database containing 8 patients. Deep 
neural networks is a type of neural architectures, which has 
more than one hidden layer and capable of better general-
ization in comparison with conventional neural networks. In 
this work, eight features are extracted from HRV signals in 
time and frequency domains. Also, 22 features are extract-
ed from EEG signals in time, frequency and time-frequency 
domains. In addition, six features are extracted through trial 
and error from ECG signals and five features are extracted 
from EEG signals through deep neural networks. Then they 
are all given to a Multi-Layer Perceptron (MLP) network 
for the prediction process. Simulation results reveal that 
the proposed method can predict the epilepsy attacks with 
73.05% average sensitivity and 70.28% specificity.

Introduction

Epilepsy is the most common neurological disorder of chil-
dren and the third common nervous system disorder among 
adults, after Alzheimer and stroke [1]. Nowadays, more than 
50 million people throughout the world, forming 1% of the 
global population, suffer from epilepsy [2]. More than 30% of 
these patients are resistant to the drug. Epilepsy can directly 
affect the human’s quality of life through various issues such 
as memory disorders, lesions due to the seizures, or potential 
psychotic disorders which are followed by social isolation [3]. 
To date, various approaches have been proposed for epilepsy 
prediction using EEG signals. EEG is the most reliable method to 
predict the majority of seizures and a number of studies have 
reported seizure prediction methods based on the EEG. How-
ever, people with seizures are often associated with changes in 
heart rate and respiration rate [4]. A seizure prediction attitude 
relies on two distinctive approaches [5]. In the first approach, 

a binary classifier is trained to exploit differences between a 
preictal and interictal states [5]. The classification can be per-
formed directly on the raw signals or after feature extraction. 
In the second approach, the analysis is focused on identifying 
the increasing or decreasing trends in values of examined fea-
tures. If the values exceed the activation thresholds an alarm is 
raised to declare an incoming seizure [5]. Here, the time interval 
before the preictal is considered as the interictal period. It is 
also medically referred to as the period in which the signal is 
in the normal mode. To extract the features, a moving window 
analysis is usually used for dividing the raw EEG or ECG signals 
into segments of smaller duration. Feature extraction provides 
dimensionality reduction and more complex, higher order fea-
ture spaces which can increase the discriminative power of 
the classification algorithm used to isolate preictal EEG and 
ECG segments [5]. Features can be extracted either manually 
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Figure 1: Schematic of the AE.

or automatically, using deep learning approaches. For EEG, 
univariate [6] and multivariate [7] features can be extracted in 
the time and frequency domains. Spectral features [8] such as 
the spectral power estimation are the most common univariate 
features. Temporal features include the statistical moments [9], 
mean [10], variance [11], skewness [12] and kurtosis [7], entro-
py approximation [13], entropy [14], phase-locking values [15], 
Hjorth parameters [16], Lyapunov exponent [16] and Principle 
Component Analysis (PCA) [17]. The frequency domain features 
are extracted from the Fast Fourier Transform (FFT) [18] and 
Discrete Wavelet Transform (DWT) [19] [20]. Relative power dif-
ferences in different frequency bands have shown great poten-
tial in detecting preictal and interictal signals [21,22]. Machine 
learning has revolutionized the seizure prediction field, offering 
tools to answer the high complexity of EEG signals and evalu-
ate multivariate features to distinguish hidden preictal charac-
teristics [5,23]. Many scientists have suggested deep learning 
approaches for the prediction of seizures. Mirowski et al. [24] 
compared the convolutional networks with logistic regression 
and support vector machines for epileptic seizure prediction 
from intracranial EEG signals. Daoud and Bayoumi [25] used the 
Convolutional Neural Network (CNN) and bidirectional recur-
rent neural network in predicting the seizures by extracting the 
spatial features from the multichannel raw EEG signals. Their 
method was based on detecting the preictal and interictal state 
[25,26]. Hosseini et al. [27] presented a cloud-based brain-com-
puter interface system for the analysis of the big EEG data. They 
further followed a deep-learning approach in which a stacked 
AE was trained in two steps for unsupervised feature extrac-
tion and classification. Tsiouris et al. [5] introduced the Long 
Short-Term Memory (LSTM) networks for epileptic seizure pre-
diction using EEG signals, expanding the use of deep learning 
algorithms with CNN. The LSTM model exploits a wide range of 
features for classification, including the time and frequency do-
main features. Sun et al. [23] presented a patient-specific meth-
od for extracting the frequency domain and time-series features 
based on the two-layer CNNs. LSTM networks were introduced 
for seizure prediction using pre-seizure clips of the EEG dataset, 
expanding the use of deep learning algorithms with recurrent 
neural networks [25]. Eberlein et al. [28] used the CNN topol-
ogy for determination of the appropriate signal features as well 
as the binary classification of preictal and interictal segments. 
Usman et al. [29] introduced a deep learning method for the 
seizure prediction by preprocessing the scalp EEG signals, auto-
mated feature extraction using CNN and classification with the 
support of vector machines. Meisel and Bailey [30] presented a 
deep learning method to extract the information from complex 
data on a large epilepsy data set containing multi-day, simulta-
neous recordings of ECG, ECoG, and EEG. They used the relative 
performance of their algorithms to compare the preictal infor-
mation contained in each modality. Rosas-Romero et al. [31] 
applied CNN to predict the epileptic seizures by analyzing fNIRS 
signals. Although most of the previous studies recruited simul-
taneous analysis of the EEG and ECG signals or various deep 
learning approaches for seizure prediction, there is a lack of 
literature on such a multi-modal study, applying deep learning 
method, for predicting the seizures. The main idea of ​​the cur-
rent study is the simultaneous use of EEG and ECG signals in the 
prediction of epilepsy using deep learning features along with 
some manually extracted features. Here, we predicted epileptic 
seizures by considering both the preictal and interictal states 
and by extracting some features introduced in the previous 
studies as well as some unsupervised features obtained using 
an automated encoder. 

Deep neural network

Auto-Encoder

Due to the simplicity of the Auto-Encoders’ (AEs) learn-
ing process compared with other algorithms in stack encoder 
networks, AEs are used as main components of the network. 
This neural network encodes the input data and reduces the 
input vector dimensions. In deep structures, one AE is used in 
each layer, which is trained separately [32]. An AE is used as a 
nonlinear compression method required to encode the input 
vector X to a representation, so as to regenerate the input. Con-
sequently, X is the output, and the target of the AE is the in-
put of the AE. Figure 1 depicts the structure of an AE, in which 
X is the input vector, h1  is the generated hidden code vector 
and X is the output vector, i.e. the regenerated input. In details, 
X ∈  −1,1 𝑛0×1 denotes the input of the AE, where 𝑛0  is the 

input dimension. The AE will encode the input vector X to the 
generated hidden vector, h1 ∈ −1,1 𝑛1×1with 𝑛1 dimension 
and generated h1 converts to the input space with lower di-
mensions. Equation 1 demonstrates the coding procedure and 
Eq. 2 and 3 show decoding procedures.

h0 = X

h1 = tansig w1x + b1

h2 = r = purline(w2h1 + b2)

(1)

(2)

(3)

In the above equations, tansig is a sigmoid function, purline 
is a linear function, w𝑘  is weighting matrix and b𝑘  is the bias 
vector of the layer k. Furthermore, r denotes the output vector 
of the AE. 

Since the desired output is the input vector X, the output is 
compared with the input and error vector will be generated, 
based on Eq. 4.

𝑒 = 𝑋 − ℎ2  (4)

In order to train the AE neural network, the error function is 
considered as Eq. 5.

E =
1
2

e2 (5)

Error back propagation training algorithm

To train the considered network, the descent gradient-based 
error back propagation method is commonly used. Training al-
gorithm of the weights and bias parameters for each input data 
is performed according to Eq. 6.

𝜃𝑡 = 𝜃𝑡−1 − 𝜀
∂𝐸𝑡 −1
∂𝜃𝑡−1

(6)
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Training weights in AE

In unsupervised training process, similar weights are used 
for the hidden layer and the output layer of the network. Equa-
tion 7 holds for the weight matrix denoting the assumption that 
weights are the same. This assumption prohibits the network 
from increasing the weights in one of the encoder or decod-
er layers and decreasing them in the other layer, which dete-
riorates the network through learning a co-linear function, not 
able to record nonlinear relationships among the inputs.

w2 = (w1�
T (7)

Stack-Encoder neural network

In this section, a number of encoder networks are arranged 
together and features are trained with no supervision, based 
on EEG and ECG data. The AE number k is represented by AEk. 
In the first layer, the input of AE1 is the EEG and ECG signals, 
segmented with moving windows. In the hidden layer, the input 
vector hk-1 related to AEk-1 is fed. For training the stack AE neu-
ral network, three-steps are considered. The first step is started 
by training the AE1. By incrementing k, corresponding AEk are 
trained with no supervision. This is continued toward the re-
gression layer. In the second step, one linear regression layer 
is located at the end of the last AE, and the last layer is trained 
through a supervised measure, based on the true predicted 
epilepsy at one time-step later. In the final step, all parameters 
of the network are trained by true predicted values, in a su-
pervised manner. A statistical descent gradient method is used 
for the supervised training purpose, applied in the second and 

third steps. 

Materials and methods

Participants, EEG and ECG recordings

The study was carried out in accordance with a protocol 
approved by the Razavi Hospital Ethics committee, Mashhad, 
Iran. EEG and ECG signals from video monitoring unit of Razavi 
Hospital were analyzed for the purposes of the current study. 
Dataset of 8 subjects, including 6 females (16-40 years) and 5 
males (10-35 years) were recruited. Twenty-four-hours record-
ings were performed with a sampling rate of 256 Hz. The EEG 
data were recorded using 23 electrodes FP1, FP2, F3, F4, C3, C4, 
P3, P4, F7, F8, T3, T4, T5, T6, O1, O2, T9, T10, TP9, TP10, FZ, PZ 
placed on the scalp of patients with epilepsy, and 2 channels 
were used for the ECG recording.

Seizure prediction methodology

We proposed a seizure prediction method that predicts start 
of preictal state few minutes before the seizure onset. Figure 2 
shows the block diagram of the proposed method. 

Signal preprocessing

Here, the aim was to eliminate the noise and motion arti-
facts. Therefore, a band-pass filter was designed with 0.05 and 
70 Hz lower and upper cut off frequencies, respectively. More-
over, a Notch filter was used to remove the high frequencies as 
well as the AC line noise (50 Hz). Regarding the time intervals 
selection, 10 minutes before the seizure was considered as the 
preictal and 20 minutes before preictal was considered as the 
interictal period. Since the biological signals, such as the ECG 
and EEG are non-stationary, the features must be extracted in 
time intervals in which the signals can be considered as the sta-
tionary signals. The length of the window, in which the signals 
were considered as stationary, was 2 seconds for the HRV and 
EEG signals.

HRV signal extraction from ECG signal

ECG signal analysis was performed by extracting the HRV sig-
nal. An ECG cycle includes P, QRS and T waves, among which 
R wave has the highest peak. The distance between two con-
secutive R peaks is referred to as the R-R interval (RRI) and R-R 
interval variabilities in the ECG signal is referred to as the HRV. 
RRI raw data were interpolated and sampled at certain time in-
tervals using spline method. Pan-Tampkin algorithm [33] was 
used in order to extract the R peak.  

Feature extraction from HRV signal

Time domain features

Time domain features which were calculated from the RRI 
data include [7]:

•	 Mean: The mean value of the RRI

•	 SD: Standard deviation of the RRI

•	 RMSSD: Root mean square of difference of adjacent RRI 

•	 Variance: RR interval variance

•	 NN50: The number of pairs of adjacent RRIs whose dif-
ference was more than 50 ms.

Frequency domain features

Following features were calculated from the HRV signal [7]:

Patients’ Database

Noise Rejection 
and Filtering

Time Selection 
for Ictal

Time Selection 
for Interictal

Extracting EEG and HRV features based on
previous investigations and unsupervised features
using deep learning from EEG and ECG signals

Unsupervised Feature 
Extraction and 

Dimension Reduction, 
using Deep Learning, 
from EEG and ECG 

signals

EEG Signal 
Windowing

HRV Signal 
Extraction 
from ECG 

Signal

Feature 
Extraction 
from EEG 

Signal

HRV Signal 
Windowing

Feature 
Extraction from 

HRV Signal

MLP Classifier

Decision Making

Figure 2: The proposed block diagram of the epilepsy prediction 
through simultaneous analysis of ECG and EEG signals.
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•	 LF: Low frequency power within 0.04-0.15 Hz representing 
the sympathetic and parasympathetic activity of the cen-
tral nervous system.

•	 HF: High frequency power within 0.15-0.4 Hz representing 
the parasympathetic activity of the central nervous system.

•	 LF/HF: Indicating the balance between sympathetic and 
parasympathetic activity of the central nervous system.

The LF and HF values were normalized to the Total Power 
(TP) due to the variability of the HRV among the subjects.

Feature extraction from EEG signal

Statistical features

Table 1, presents the statistical features extracted from the 
EEG signals. Here, X (i) indicates the sample i of the time-series 
and n represents the total number of the samples.

Table 1: Statistical features extracted from the EEG signals.

Feature Mathematical Relationship

Mean 𝑋�=
1
𝑛 �𝑋[𝑖]

𝑛

𝑖=0

Variance 𝜎𝑥2 =
1
𝑛  � 𝑋[𝑖

𝑛

𝑖=0

−𝑋��
2

Skewness Skewness =
1
𝑛∑ 𝑋[𝑖𝑛

𝑖=1 − 𝑋�)3

�1
𝑛∑ �𝑋 𝑖 −𝑋�𝑛

𝑖=1 �2�
3
2

Kurtosis Kurtosis =
1
𝑛∑ 𝑋 𝑖 −𝑋� 4𝑛

𝑖=1

1
𝑛∑ 𝑋 𝑖 − 𝑋� 2𝑛

𝑖=1

2

Hjorth Parameters

These parameters specify the dynamics and complexity of 
the signal. They are calculated according to the Eq. 8 and 9, 
based on the original signal (𝑥 ), as well as its first and second 
derivatives (denoted by 𝑥’  and  𝑥”, respectively).  σ Repre-
sents the square root of the variance. 

Mobility =
σx ,

σx
 (8)

complexcity = σx ,, σx,⁄ ) (σx, σx⁄⁄  (9)

Decorrelation Time

Decorrelation time is defined as the first time when zero 
crossing occurs in the autocorrelation sequence of the EEG sig-
nal. Zero decorrelation time implies that signal samples have 
low correlation with each other. In many cases, decorrelation 
time of a sequence of the white noise is theoretically zero. Be-
fore seizure, the power of the signal correlation, for the lowest 
frequency has a significant decrease which leads to the reduc-
tion of the decorrelation time [11].  

Energy of the signal

The energy of the continuous-time EEG signal can be calcu-
lated according to the Eq. 10, where X (t) denotes the EEG sig-
nal.

Frequency domain features

The EEG signal power at different frequency bands and the 
median frequency were calculated as the following:

•	 Delta frequency band power (𝛿) measured at 0.1-4 Hz.

•	 Theta frequency band power (𝜃) measured at 4-7 Hz.

•	 Alpha frequency band power (𝛼) measured at 7-14 Hz. 

•	 Beta frequency band power (𝛽) measured at 14-30 Hz.

Median frequency (𝑓𝑚𝑒𝑑) power calculated according to the 
Eq. 11:

� S w dw = � S w dw
∞

fmed

fmed

0

(11)

Where 𝑆 denotes the power spectrum density. The signal 
power at these frequency bands was calculated by periodogram 
method.

Time-frequency features

Historically, the Fourier spectrum analysis is a popular meth-
od for evaluating the power/frequency distribution. However, it 
is not applicable for biological signal analysis, such as EEG and 
ECG, due to its limitation for non-stationary signals. Therefore, 
DWT analysis was applied in the current study. The energy of 
the wavelet coefficients were calculated by Daubechies-4 wave-
let function with 6 sub-bands.

Feature extraction using stack-Encoder neural network

EEG and ECG raw signals (segmented by two-second win-
dows), were considered as the first AE inputs. For the dimension 
reduction and features extraction purposes, five consecutive 
AEs were used. The number of consecutive AEs were select-
ed based on the trial and error. In fact, a two-second window 
containing 512 samples (i.e. features) was considered as the 
AE input. Then it was passed over five consecutive AEs. Conse-
quently, 512 feature were reduced to 150, 50, 20, 10 and finally 
6 features for the ECG modality and similarly, 512 features were 
reduced to 150,50,20,10 and finally 5 features for EEG modality. 
Selecting the number of features in each AE (i.e. outputs of the 
AE) was based on the trial and error, by considering the error. 
After passing over a linear layer, the output was obtained. Then, 
the error back propagation algorithm was applied to the gener-
ated outputs to update weights and biases of two ending layers. 
Time series data of ECG and EEG signals at each time step have a 
lot of common information. As a result, a new deep hierarchical 
model was designed to predict the epilepsy time series, through 
simultaneous use of EEG and ECG signals (Figure 3).   

� 𝑋(𝑡) 2𝑑𝑡
+∞

−∞

(10) Figure 3: Hierarchical stack AE model.
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In this hierarchical model, the dimensions of EEG and ECG 
signals were simultaneously reduced and corresponding data 
were compressed and processed. Finally, through trial and er-
ror, five and six features were obtained from EEG and ECG sig-
nals, respectively. Hence, 11 features were passed over a linear 
function and the output was generated. After generating the 
output and calculating the prediction error, weights and biases 
of layers were updated through the error back propagation al-
gorithm.  

Eight temporal and frequency features were extracted from 
the HRV signal, based on the features noted in previous studies. 
Moreover, six other features were extracted from the ECG sig-
nal through trial and error, by the AE. Hence, 14 features were 
extracted from HRV and ECG signals for each patient. In addi-
tion, 19 features were extracted from the EEG signal based on 
previous studies and five other features were extracted through 
trial and error for each EEG channel by the AE. Totally, 24 fea-
tures were extracted from the EEG signals for each patient. The 
stack encoder algorithm was employed for the unsupervised 
learning in time series.

Multilayer perceptron classifier

In this study, MLP was used as a reference to evaluate the 
proposed model. Two classes were considered; the label of the 
preictal class was denoted by 0 and that of the interictal class 
was denoted by 1. The prediction time was considered 10 min-
utes, which was corresponding to the preictal interval. After 
windowing and determining suitable labels for each window, 
some features were extracted.

In the current study, data were divided as follows: 60% of 
each group of the seizure and normal data was allocated for 
the training, 20% was allocated for the validation and 20% was 
allocated for the testing purpose.This categorization was per-
formed in random and there were no common data among the 
groups. For determining the training stop-time of the algorithm, 
the validation data were given to the network and obtained 
outputs were compared with desired outputs. The error of the 
network was determined by Mean Square Error (MSE) criteria. 
When the value of the MSE reached less than 0.01, the training 
phase for validation data was stopped.  

For those patients with more than one seizure, the MLP al-
gorithm was evaluated as follows. The first seizure was used as 
the training data and others were used for testing. In order to 
validate the proposed algorithm, accuracy, sensitivity, specific-
ity and confusion matrix were used as criterions, which were 
calculated as Eq. 12-14:

Where TP, TN, FP and FN are true positive, true negative, 
false positive and false negative values, respectively. These val-
ues were computed in MATLAB Software through the confusion 
matrix.

Results

Table 2, represents the results obtained from feature extrac-
tion based on the previous studies and features extracted by 
using the stack AE.

Accuracy  Ac =
TP +  TN

TP +  FN +  TN +  FP
% (12)

Sensitivity Sn =
TP

TP +  FN
% (13)

Specificity Sp =
TN

TN +  FP
% (14)

Table 2: Results of the proposed algorithm for 8 patients.

Fusion (EEG, ECG)

Patient Sensitivity (%) Specificity (%) Accuracy (%)

1 84.7 76.4 80.5

2 63.12 65.58 64.38

3 64.55 63.125 65.2

4 88.96 86.16 87.66

5 65.7 62 63.85

6 60 74.46 67.23

7 85.65 61 73.32

8 71.7 73.55 72.63

Average 73.05 70.28 71.85

Considering features extracted from the stack AE besides 
significant features will increase the sensitivity, specificity and 
accuracy. 

Conclusion

Predicting seizure in epileptic patients is of great impor-
tance. Numerous attempts have been taken to automatically 
perform this process and they are continually developing. A key 
point in such prominent attempts is employing non-invasive 
methods, which enhance the safety and welfare of the patient. 
In the current study,  time and frequency domain features were 
extracted from the HRV signals and the time, frequency, and 
time-frequency features were extracted from the EEG signals. 
These features are more oscillating in the preictal rather than 
the interictal mode, which means that the seizure effects are 
more evident in the preictal mode. All the features were pro-
vided to the neural networks to accurately predict epilepsy and 
distinguish between the interictal and preictal periods. 
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