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Abstract

Titanium Dioxide Nanoparticles (TiO2-NPs) are one of 
the most used materials in the production of inputs from 
different industries such as food, cosmetics and many oth-
ers. However, the prolonged occupational and consump-
tion exposure to these TiO2-NPs has been shown to have 
serious health consequences. One of the main entry routes 
to humans of these TiO2-NPs is the respiratory route. Once 
inside, they can go to the lungs and enter the circulation 
or, come into contact with the brain through olfactory bulb. 
This review shows the most relevant works of damage asso-
ciated with TiO2-NPs in the respiratory and nervous systems 
in tests performed both in vivo and in vitro, with a vision 
that encompasses everything from the first findings to the 
most novel data.
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Introduction

The first reports on the use of Nanoparticles (NPs) date back 
to the late 70’s and describe the use of particles in nanomet-
ric size as delivery systems for anticancer drugs [1]. Almost two 
decades later their concept was established [2] defining NPs as 
particles with a diameter below 50 nm separating them from 
other ultrafine particles, although the current accepted size is 
100 nm. In those years, we can find the first scientific reports 
that propose the use of NPs in other industries for example as 
molecular sunscreens due to their ability to reflect UV radiation 
[3]. 

One of the most used NPs are Titanium Dioxide Nanoparti-
cles (TiO2-NPs). These are produced with titanium isopropoxide 
solubilized in ethanol, which is subjected to an industrial stirring 
process at 0 ⁰C and a hydrothermal treatment to produce three 
different crystalline forms: rutile, anatase and brookite, where 
rutile is the stable phase in the bulk material. In solution, repa-
ration methods for TiO2 generally favor the anatase structure 
(Figure1) [4]. The size of the TiO2-NPs also plays a role on their 
structure. X-ray absorption spectra indicate that TiO2-NPs with 
an average particle size of approximately 12-30 nm have an ana-
tase structure, whereas TiO2-NPs with an average particle size 
of approximately 7 nm has a structure very similar to that of the 
rutile phase, which generally arises only under high-pressure 
conditions. This difference can be attributed to size-induced ra-
dial pressure within the smaller nanoparticles [5]. Size, shape 
and crystalline phase are important differences between differ-
ent types of TiO2-NPs, but in this review we made a selection of 
principal works reported with all the TiO2-NPs types used in the 
research field.

Figure 1: Schematic flow chart illustrating the steps in the 
synthesis of phase-pure TiO2 nanomaterials.

Today TiO2-NPs are widely used in many industries. For ex-
ample, E171 TiO2-NPs are used in the food industry they are a 
common food additive used to enhance the white color, bright-
ness, and sometimes flavor of a variety of food products [6]. It 
has been used for the production of coated candy, preserved 
fruits, chewing gum, carbonated drinks, powdered drinks (in 
unsweetened dosage form or concentrated), milk and dairy 
products, and other food categories [7,8]. The concentration 

of TiO2-NPs in food reaches as high as 0.5-9 g/kg [6,7]. TiO2-
NPs have also been widely used in biomedicine, organic pollut-
ant treatment, materials engineering and cosmetics [9,10]. As 
mentioned above, one of the most important uses of TiO2-NPs 
is in the sunscreen industry. P25 TiO2-NPs (TiO2-NPs for indus-
trial applications) can absorb and reflect UV radiation of two 
wavelengths (310 and 400 nm) [11]. Modern sunscreens con-
tain TiO2-NPs, which are colorless, reflecting and scattering Ul-
traviolet Light (UV) more efficiently than larger particles [12]. In 
the occupational settings such as factories, employees are di-
rectly in contact with TiO2-NPs and the primary exposure route 
to them internalization is the inhalation through the respiratory 
system [13]. Once inside the respiratory tract, TiO2-NPs can be 
internalized to the lower respiratory tract, coming in contact 
with lungs and substructures, and reach many organs through 
blood circulation. Due to their nanometric size, they can also 
translocate to the upper respiratory tract, crossing the olfac-
tory bulb and the blood-brain barrier entering in contact with 
the brain crossing the Blood-Brain Barrier (BBB) [14] (Figure 2). 
In addition, in vivo studies shown that TiO2-NPs can reach the 
brain after chronic oral intake [15].

Figure 2: Schematic representation of the entry of the TiO2-
NPs through the respiratory tract.

For many years TiO2-NPs were considered inert and safe for 
human health [12], but in the last decade, various studies dem-
onstrated that TiO2-NPs induce cell toxicity and damage both 
in vitro and in vivo. Due to their occupational exposure and hu-
man consumption, more studies about toxic effects induced by 
TiO2-NPs are needed. In this work, a review of effects of TiO2-
NPs on the principal cells and organs from the respiratory and 
nervous systems both in vivo and in vitro is shown, to consider 
the future perspectives for large-scale manufacturing and ap-
plications of TiO2-NPs.

TiO2-NPs and the respiratory system

The first study that reported damage induced by TiO2-NPs 
was in 2004. Studies have reported an increment in the poly-
morphonuclear neutrophils recruitment at the bronchoalveolar 
lavage in rats instilled with TiO2-NPs [16]. Neutrophils function 
as the first line of defense against infections being responsible 
for the containment and elimination of pathogens. They are 
prevalent at sites of tissue trauma and are the hallmark of acute 
inflammation [17]. Inflammation induced by TiO2-NPs also in-
creases macrophage activity, another indicator of a stimulated 
immunity response [18].
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In vitro studies

Treatments with TiO2-NPs in epithelial cells of human lung 
Adenocarcinoma (A549) report an inflammatory response re-
leasing Interleukin 18 (IL-8) [18-20] and Reactive Oxygen Species 
(ROS) [20] plus Glutathione (GSH) depletion [18] as oxidative 
stress markers with a decrease on the cell viability and prolif-
eration [21]. In a concentration-dependent manner in A549 and 
L-132 lung cell lines, oxidative stress were also induced [22,23]. 
The DNA structure of A549 cells was affected in presence of 
TiO2-NPs causing single and double-strand breaks plus oxida-
tive lesions [24-26]. However, results from another group did 
not support these findings. They did not found DNA damage 
and ROS release after TiO2-NPs exposition, in comparison with 
cobalt NPs treatment [27]. Apoptosis and other signals of cell 
damage like LDH release, mitochondrial injury, changes in ATP 
levels, and morphological alterations in this cell line have been 
reported after a TiO2-NPs exposure [23,28,29]. One of the most 
recent studies with A549 cells treated with TiO2-NPs showed 
an increase in triglycerides evaluated By Surface-Enhanced 
Raman Spectroscopy (SERS). In normal conditions, cholesterol 
levels are fairly constant and triglyceride levels can fluctuate, 
but under stress conditions cells can deposit more fatty acids 
as triglycerides reducing cholesterol levels, creating a linear in-
crease of the triglyceride/glycogen ratio. This indicates a switch 
of metabolic activity to fatty acid biosynthesis due to mitochon-
drial dysfunction [30].

TiO2-NPs exposure in normal human bronchial epithelial 
cells showed similar results to lung adenocarcinoma, such as 
induction of oxidative stress, pro-inflammatory responses, DNA 
damage and apoptosis through lysosomal membrane destabili-
zation and lipid peroxidation [31-36]. TiO2-NPs induced mucus 
hypersecretion in human bronchial epithelial cells ChaGo-K1 via 
a Ca (2+) signaling mediated pathway. The increase of mucus 
secretion is the major clinical manifestation commonly found 
in Chronic Obstructive Pulmonary Disease (COPD) and asthma 
[37]. A proteomic investigation in BEAS-2B cells, revealed that 
TiO2-NPs altered 46 proteins expression levels, which include 
some key proteins involved in cellular stress response, metabo-
lism, adhesion, cytoskeletal dynamics, signaling, cell growth 
and death [38]. Although one study found neither genotoxic 
damage nor ROS liberation in these cells [39]; in the same year, 
another research group confirmed genotoxic damage induced 
by TiO2-NPs in TK6, human endothelial and cerebral endothe-
lial cells, hepatocytes, Kupffer cells, CoS-1, HEK293, BeWo b30 
and bronchial 16HBE14o cells [40]. In the Endoplasmic Reticu-
lum (ER) of 16HBE14o cells, NPs induced stress, disrupting the 
mitochondria-associated endoplasmic reticulum membranes 
(MAMs) and calcium ion balance, thereby increasing autophagy 
[13]. An epigenetic study showed global hypomethylation after 
24 h of TiO2-NPs treatment at sub cyto-genotoxic concentra-
tions [41]. It is well known that DNA methylation is an epigen-
etic process involved in gene silencing.

Some studies have compared the cytotoxic effects of TiO2-
NPs in the phagocytic RAW 264.7 cells, a common lung target 
for NPs. TiO2-NPs did not induce ROS production, LDH release 
[42] and apoptotic death [43] in comparison with carbon black 
NPs, and ZnO, DQ12 quartz and amorphous silica respectively. 
Finally, in Normal Human Bronchial Epithelial cells (NHBE) the 
release of IL-6, Granulocyte Colony-Stimulating Factor (G-CSF) 
and Vascular Endothelial Growth Factor (VEGF) was induced by 
TiO2-NPs as a result of an immune response [19], while in hu-
man lung fibroblasts inhibited the intercellular communication 

in gap junctions, affecting juxtacrin signaling [44]. 

In vivo studies

Since 2006, in vivo studies in rats instilled with TiO2-NPs re-
sulted in transient inflammatory responses and cell injury at 
24 h post-exposure, inducing pulmonary emphysema, macro-
phages accumulation, extensive disruption of alveolar septa, 
type II pneumocyte hyperplasia, and epithelial cell apoptosis 
[45,46]. Another research group found differences in relation to 
surface properties like crystal structure in cell damage induced 
by TiO2-NPs. They showed that 80/20 anatase/rutile TiO2-NPs 
produced pulmonary inflammation, cytotoxicity and adverse 
effects in lung tissue, versus pure rutile TiO2-NPs that induced 
only transient inflammation [47]. Several studies showed that 
TiO2-NPs are deposited inside the lungs and can translocate 
from the pulmonary airways into other pulmonary compart-
ments or the systemic circulation, and their accumulation sites 
are time-dependent, for example, 1 h after exposure to NPs, 
the connective tissue was the preferential target while after 24 
h most TiO2-NPs were located in the capillary lumen [48-49].

On the other hand, various works have shown that TiO2-NPs 
can favor cancer development. Rats exposed by intratracheal 
instillation to TiO2-NPs showed carcinogenic responses and lung 
neoplastic lesions induced by N-bis (2-hydroxypropyl) nitrosa-
mine (DHPN) [50].

Recent observations indicate that nasal exposure to TiO2-NPs 
promotes lung tumorigenesis with increased levels of tumor 
markers including cytokeratin 19 and carcinoembryonic antigen, 
as well as higher LDH, alkaline phosphatase and infiltration of 
inflammatory cells in Bronchoalveolar Lavage Fluid (BALF) [51].

Additionally, TiO2-NPs effects have been associated with in-
flammatory processes in lungs. Mice treated with TiO2-NPs by 
intratracheal instillation for 2 and 4 hours over 4 weeks, expe-
rienced chronic inflammation with increased IgE production in 
BALF and serum. In lung tissue, an increase of Inflammatory 
Proteins (MIP and MCP) and granuloma formation were also 
observed [52]. Neutrophilia was induced in rats by inhalation 
of TiO2-NPs [53]. However, a study reported that in compari-
son with another metallic NPs (cerium, nickel, zinc and copper 
oxides, silicon dioxide and carbon black), TiO2-NPs did not in-
duce inflammatory responses even in high concentrations [54], 
in contrast to other works that support this fact and show that 
lung inflammation occurs in mice primarily through the NF-κB 
signaling pathways after intragastric administration [55]. Addi-
tionally, particle size is not important to induce a toxic effect 
compared with other surface characteristics such as chemical 
reactivity and surface area. TiO2-NPs did not show measurable 
differences in toxicity induction compared with fine-sized par-
ticles (300 nm), producing an enhanced inflammatory response 
with particles of similar sizes but different surface areas [56]. 

On the other hand, TiO2-NPs have an impact in lung physiol-
ogy altering the structure and function of the pulmonary sur-
factant. Under TiO2-NPs exposure, lamellar body-like structures 
were deformed and decreased in size; and unilamellar vesicles 
were formed. Particle size and surface area play a critical role 
in the response of pulmonary surfactant, with an increment in 
adsorption surface tension [57].

Recent studies in rats and mice treated by instillation and in-
traperitoneal injection confirmed the accumulation of TiO2-NPs 
in lungs, accompanied by reduction in organ/body weight ratios 
and tissue damage by oxidative stress [58,59].
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An investigation on the kinetics of TiO2-NPs accumulation in 
many organs of rats exposed by different intake routes (intrave-
nous injection, intratracheal instillation and oral application) to 
a low single dose (typically 40-400 μg/kg BW), found the pres-
ence of NPs in all organs tested by all administration ways [60-
62].

The respiratory exposure to metallic NPs (including cerium 
oxide, silver and TiO2-NPs) during pregnancy impaired lung de-
velopment in the offspring with lasting effects in adult mice, in-
dependently of the type of NPs [63]. In an adult mouse model 
of Ovalbumin (OVA)-induced allergic lung disease, TiO2-NPs ex-
acerbated the airway hyperresponsiveness and inflammation, 
increasing IL-1β and IL-18 release plus NLRP3 inflammasome 
and caspase-1 activity in the lung [64]. Finally, in humans, stud-
ies in exhaled breath condensate of workers exposed to TiO2-
NPs found DNA, protein and lipid oxidation [65-66]. The exhaled 
breath condensate technique consists in collect and cools the 
exhaled air of people. The liquid obtained reflects the composi-
tion of the airway lining fluid [65]. Specific markers of nucleic, 
protein and lipid damage induced by oxidative stress were ana-
lyzed. All these markers are significantly increased in workers 
that were exposed to TiO2-NPs. A summary of experiments per-
formed in vitro and in vivo by exposure to NPs is shown Figure 3.

Figure 3: Abstract graphic of the alterations induced in lung 
cell cultures and lungs of animals exposed to TiO2-NPs.

TiO2-NPs and the nervous system

Since 2006, TiO2-NPs were reported as agents that can cause 
brain damage [67], and one work showed induction of oxida-
tive stress in microglia [68]. In that year also appeared one of 
the first reviews describing that NPs can deposit in the respira-
tory tract after inhalation, and the uptake of nanoparticles by 
the brain via the olfactory epithelium [69]. One year later, other 
studies showed that TiO2-NPs could be translocated and depos-
ited in murine brain after absorption by the nasal mucosa alter-
ing the release and metabolism of neurotransmitters in brain 
[70]. 

Fishes are one of the most used models to evaluate the tox-
icity of TiO2-NPs in many organs including the brain. The mech-
anisms of absorption, distribution, metabolism and excretion 
of TiO2-NPs have been analyzed across different NPs in these 
models [71]. Some reports in Oncorhynchus mykiss and Cypri-
nus carpio showed that TiO2-NPs have sub-lethal toxicity lead-
ing to oxidative stress, organ pathologies, and the induction of 
anti-oxidant defenses such as glutathione [72,73]. In Danio rerio 
exposed to NPs, several alterations were observed in major bio-
chemical constituents such as proteins, lipids and nucleic acids 

of brain tissues [74], a decrease of spatial recognition memory 
and levels of norepinephrine, dopamine, and 5-hydroxytrypta-
mine, an increment in NO [75], and a lower cumulative number 
of viable embryos produced [76]. 

 In vitro studies

Alzheimer´s disease is one of the most studied neurode-
generative disorders. One of the most relevant events in the 
development of this disease is the accumulation of amyloid 
deposits as extracellular plaques mediated by fibrillation of the 
Amyloid-β peptide (Aβ). One study showed that TiO2-NPs can 
induce Aβ fibrillation by reducing the nucleation process, which 
is the key step of fibrillation [77]. In PC12, a cell line derived 
from the rat adrenal medulla used for brain neurons research, 
TiO2-NPs diminished cell viability, ROS generation and apoptosis 
[78]. 

In primary cultures of olfactory bulb neurons, TiO2-NPs 
caused neuronal apoptosis, and down-regulated the expression 
of Olfactory Marker Protein (OMP), which is associated with the 
mature olfactory neuronal receptor in many vertebrate spe-
cies; also down-regulating Tyrosine Hydroxylase (TH) [79]. In 
rats treated intravenously with a single dose of TiO2-NPs, the Ti 
content in the brain significantly increased at early end points 
followed by a subsequent decrease at 24 h, in contrast with 
liver, spleen and lungs where Ti persisted for a year. Ti deposits 
induced an increment of tight junction proteins (claudin-5 and 
occludin), IL-1β, Chemokine Ligand 1 (CXCL1) and γ Inducible 
Protein-10 (IP-10/CXCL10) in endothelial cells of the brain mi-
crovasculature. These results suggest a potential effect of TiO2-
NPs in organs distant from the brain, possibly via mediators 
transported by circulation [80]. 

There is a kind of cytoskeletal proteins that are essential in 
eukaryotic cells for a variety of functions such as cellular trans-
port, cell motility and mitosis named microtubule proteins. In 
neurons, these proteins are used to transport substances such 
as neurotransmitters. In microtubule proteins isolated from 
sheep brains, TiO2-NPs induced a significant tubulin conforma-
tional change and disrupted tubulin polymerization [81].

In human-derived cells some studies have been performed. 
In endothelial cells from the brain, TiO2-NPs were up taken and 
transported into the lysosomes, activating lysosomal proteases 
and oxidative stress, correlated with an increase in DNA strand 
breaks and defensive mechanisms that, ultimately induced an 
autophagy process in the cells [82]. Other studies focused their 
attention in the capacity of TiO2-NPs to cross the BBB using a 
model of hCMEC/D3 endothelial cells. They observed endocy-
tosis and eventual transcytosis of these NPs [83]. In another 
study, Neural Stem Cells (hNSCs) were exposed to TiO2-NPs to 
evaluate the effects on neurogenesis and brain function. The 
results showed that hNSCs formed aggregates and exhibited 
abnormal morphology, also affecting the expression of Nestin 
(stem cell marker) and Neurofilament Heavy polypeptide (NF-H, 
neuron marker) [84].

Some works have reported the effect of TiO2-NPs on glial 
cells. These cells including the astrocytes are very important 
for the correct brain function and maintenance. In C6 and U373 
rat and human cell lines, respectively, TiO2-NPs induced many 
injuries as morphological changes that were related with a de-
crease in immuno-location of F-actin fibers, DNA fragmenta-
tion, apoptosis, oxidative stress induction, lipid peroxidation, 
increased expression of antioxidant molecules and changes 
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in mitochondrial membrane potential [85,86]. The last work 
group also proved that TiO2-NPs were internalized shortly after 
exposure (30 min and 2 h in C6 and U373 cells, respectively) 
with formation of pseudopodia and intracellular vesicles. NPs 
internalization was strongly inhibited by cytochalasin-D (actin-
dependent endocytosis inhibitor) in both cells and by amiloride 
in U373 cells, indicating that macropinocytosis is the main pro-
cess of internalization in the latter [87]. In primary cultured rat 
astrocytes, NPs induced significant loss of glutamate uptake, 
indicative of a loss of vital astrocyte functions. NPs also in-
creased ROS and mitochondrial damage evidenced as changes 
in morphology and decreased membrane potential. NPs at low 
and high concentrations altered the expression pattern of dy-
namin-related and apoptotic fission proteins respectively, both 
related with mitochondrial dynamics [88]. Finally, in microglial 
BV-2 cells, another kind of glial cells involved in inflammatory 
response, internalization of TiO2-NPs, mitochondrial dysfunc-
tion and oxidative stress were observed [89].

Neuron-glial interactions were recently studied to elucidate 
how TiO2-NPs can affect these interactions. Co-cultures of ALT 
astrocyte-like, BV-2 microglia and differentiated N2a neuroblas-
toma cells were treated with TiO2-NPs. ALT and BV-2 cells inter-
nalized more TiO2-NPs than N2a cells resulting in lower cell vi-
ability. TiO2-NPs also induced release of IL-1β in all cell lines and 
IL-6 in N2a. Glial cells were activated by pre-treatment with Li-
popolysaccharide (LPS) before the TiO2-NPs treatment, thereby 
mimicking NPs exposure under brain injury. LPS-activated BV-2 
cells internalized more TiO2-NPs than normal BV-2 releasing 
more intra/extracellular ROS, IL-1β, IL-6 and MCP-1 proteins. 
Although TiO2-NPs did not directly cause loss of viability in N2a 
cells, when these cells were co-cultured in the transwell system 
with LPS-activated BV2 cells treated with NPs, late apoptosis 
and loss of cell viability in N2a cells were observed. However, 
none of the adverse effects in N2a or BV-2 cells were observed 
when these were co-cultured with ALT cells, demonstrating that 
neuronal damage can result from TiO2-NPs-mediated ROS and/
or cytokines release from microglia, but not from astrocytes 
[90]. 

In vivo studies

Studies in insects, for example Bombyx mori (silkworm) 
exposed to TiO2-NPs showed an increment in 20-hydroxyec-
dysone, an important protein during transition from larvae to 
pupae, shortening the developmental progression, and the du-
ration of molting [91].

Many studies confirm the cytotoxicity of TiO2-NPs in the 
brain of rodents. Rats and mice exposed to TiO2-NPs showed 
damage by oxidative stress and lipid peroxidation [92-95]. NPs 
also produced a high inflammation responses associated with 
Tumor Necrosis Factor-α (TNF-α) and IL-1β in a time-dependent 
manner in sub-brain regions including olfactory bulb, cerebral 
cortex, hippocampus, and cerebellum [92,96]. Increased apop-
tosis and dopamine and norepinephrine levels in hippocampus 
and cerebral cortex were also reported after TiO2-NPs expo-
sure [94,95,97]. Wang and collaborators also reported mor-
phological changes of hippocampal neurons and high number 
of GFAP-positive astrocytes in the CA4 region of hippocampus. 
They reported lipid and protein oxidation, catalase activity and 
glutamic acid plus nitric oxide release in this brain region [98]. 
A recent work confirmed that TiO2-NPs downregulated acethyl-
cholinesterase activity, increasing IL-6 release and GFAP reactiv-
ity in rat cerebral cortex [99]. TiO2-NPs exposure induced glu-
tamate release, phosphate-activated glutaminase activity, and 

reductions in glutamine and glutamine synthetase expression 
in the hippocampus. Furthermore, TiO2-NPs significantly inhib-
ited the expression of N-methyl-d-aspartate receptor subunits 
(including NR1, NR2A, and NR2B) and metabotropic glutamate 
receptor 2 in this tissue [100]. 

One work group proposed that TiO2-NPs induced oxidative 
damage in mice brain may occur via the p38-Nrf-2 signaling 
pathway, because NPs significantly activated p38, c-Jun N-ter-
minal kinase, NF-κB, Nrf-2 and heme oxygenase-1 expression, 
increasing ROS, as well as lipid, protein and DNA peroxidation 
[101]. A neurotoxicity and gene-expressed profile showed sig-
nificant alterations in 249 genes. This profile showed up- and 
down-regulation of 113 genes and 136 genes respectively, relat-
ed with oxidative stress, immune response, apoptosis, memory 
and learning, brain development, signal transduction, meta-
bolic processes, DNA repair, response to stimulus, and cellular 
processes [97].  The homeostasis of neuronal synaptic plasticity 
was investigated at the level hippocampal mRNA expression in 
mice treated with TiO2-NPs by subchronic oral exposure. They 
observed that NPs caused severe pathological changes, down-
regulating N-methyl-D-aspartate (NMDA), receptor subunits 
NR2A and NR2B, associated with the simultaneous inhibition 
of CaMKIV, Cyclic-AMP, Responsive Element Binding Proteins 
(CREB-1, CREB-2), and FosB/DFosB [102]. TiO2-NPs also induced 
neuroinflammation, upregulating Toll-Like Receptors (TLR2, 
TLR4), TNF-α, nucleic IκB kinase, NF-κB-inducible kinase, NF-κB, 
NF-κB2 (p52), RelA (p65); while suppressing IκB and IL-2 in the 
hippocampus [103]. Recently, molecular studies focused on epi-
genetic patterns proposed that TiO2-NPs-induced brain damage 
is associated with DNA methylation [104]. Presence of TiO2-NPs 
in brain was reported in mice after 60 days of dermal exposure 
in hairless mice [105]. In contrast, one research using dispersive 
X-rays found that TiO2-NPs aggregates administrated by intra-
venous and subcutaneous injection were not deposited in the 
brain [106].

Inside the Alzheimer´s disease research, one investigation 
found that TiO2-NPs produce mild to moderate changes in the 
cytoarchitecture of the brain tissue in a time-dependent man-
ner, and a point mutation of Presenilin 1 gene at exon 5, gene 
linked to inherited forms of this disease [107].

NPs can cross the placenta barrier in pregnant mice and in-
duce neurotoxicity in their offspring. TiO2-NPs internalization 
causes complications during pregnancy like smaller uteri and 
fetuses [108]. TiO2-NPs affected gene expression related to de-
velopment and function of the central nervous system in off-
spring, with changes oxidative stress-related genes in the brains 
of two and three-week old mice [109,110]. TiO2-NPs also influ-
enced the development of the central dopaminergic system in 
offspring increasing dopamine and its metabolites in prefrontal 
cortex and neostriatum [111]. The same effect was observed 
in cerebral cortex, olfactory bulb and some regions intimately 
related to this system [112]. TiO2-NPs could affect the synaptic 
plasticity in offspring's hippocampal dentate gyrus area (asso-
ciated with learning and memory), indicating that brain devel-
opment, especially during lactation, is susceptible to TiO2-NPs 
exposure [113].

TiO2-NPs increase IL-1β, TNF-α and IL-10 in brain, and disrupt 
BBB leading to brain tissue necrosis, inflammation and cellular 
edema as shown in rat astrocytes [114]. This contrasts with an 
in vitro study reporting that TiO2-NPs promoted the acquisition 
of a proinflammatory phenotype specifically in microglia and 
not in astrocytes [115].
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Conduct, cognition and behavior studies are very important 
fields in neurosciences research. Rats treated by intraperito-
neal injection with TiO2-NPs were tested in elevated plus-maze. 
This test model is based on animal's aversion to open spaces 
and tendency to avoid the physical contact, where anxiety is 
expressed by the animal spending more time in the enclosed 
arms. Results obtained with this test showed that treated rats 
spent more time in the secured closed arms and entered the 
anxiogenic open arms less frequently than control, with in-
creased brain/body ratio [116]. Additionally, spatial recognition 
was impaired in rats with subchronic oral exposure to TiO2-
NPs [102]. Finally, central administration of TiO2-NPs by intra-
cerebroventricular injection induced behavioral deterioration in 
freely moving intact rats [117].

Prenatal exposure to TiO2-NPs have a negative impact on 
the offspring´s behavior: for example, TiO2-NPs enhanced the 
depressive-like behaviors during adulthood in the forced swim-
ming test. This test evaluates three variations of mobility (immo-
bile, mobile, and highly mobile). A sucrose preference test was 
also performed. Results showing that TiO2-NPs-treated mice 
increased immobility in the forced swimming test. Immobility 
is a sign of passive stress–coping strategy and depression-like 
behavior. Finally, treated mice showed less interest in sucrose 
water versus tap water. In this test, the loss of interest is a core 
symptom of depression [118]. TiO2-NPs also decreased memory 
and learning in the offspring [119]. These results suggest that 
stress during fetal life induced by prenatal exposure to TiO2-NPs 
could be implicated in depressive-like behaviors and the loss of 
memory in adulthood. A summary of experiments performed in 
vitro and in vivo by exposure to NPs is shown in Figure 4.

Figure 4: Abstract graphic of the alterations induced in brain 
cell cultures and brains of animals exposed to TiO2-NPs.

Conclusion 

In conclusion, there is significant in vitro and in vivo evidence 
that TiO2-NPs exposure in cells and organs associated with re-
spiratory and nervous system produces cell toxicity, stress, in-
flammatory response, damage and death. In normal life the oc-
cupational and ordinary exposure to these nanoparticles occurs 
mainly through the respiratory system, involving internalization 
and distribution inside the body followed by accumulation in 
lungs and brain. The presence of TiO2-NPs may lead to chronic 
damage and dysfunction of these organs also triggering the 
development of diseases, which turns TiO2-NPs into a serious 
health issue that requires immediate attention.
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