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Abstract

Predicting phenotypes and QTL genotypes is of great val-
ue to breeding programs, especially those that make hun-
dreds of crosses every year. Determining parents to make 
cross combinations is a complex process, and a breeder will 
use all available information to make that determination. 
Likewise, any available predictions of performance or of 
QTL genotypes for seedlings can be used in selection. Sev-
eral well-established statistical methodologies are utilized 
to predict phenotypes and breeding values using genome-
wide markers [1-3], but predicting unknown QTL genotypes 
and phenotypes based on specific QTL is rarely reported. 
However, a Pedigree-Based Analysis (PBA) software called 
FlexQTL™ has the statistical capability to predict QTL geno-
types and unknown trait phenotypes. Although the theo-
retical foundation of this approach was laid years ago [4,5], 
no application has been reported in the literature to our 
knowledge. Rather, FlexQTL™ has primarily been used for 
QTL discovery and validation in multi-parental, pedigree-
connected populations. Yet PBA can be used to predict QTL 
genotypes (QQ, Qq, qq) and phenotypes for individuals hav-
ing marker data only.

The goal of predicting unknown phenotypes is the same 
for established genome-wide selection approaches and for 
the FlexQTL™ approach, but pedigree connectivity is at the 
core of the analysis, and locus-specific markers (as opposed 
to genome-wide markers) are utilized. In both approaches, 
datasets are divided into training populations with pheno-
typic and marker data andtest populations with marker data 
only. Of course, a high degree of relatedness between train-
ing and test population is essential using either approach.
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Overview of an example breeding program

In a typical strawberry breeding program, the pool of elite 
parents used to make crosses is updated rapidly according to 
industry and environmental needs. Because of its octoploid ge-
nome, determining the genetic architecture underlying traits 
in cultivated strawberry is challenging. In addition, strawberry 

varieties are mostly asexually propagated, and maintaining a 
strawberry clone from first year field trail to its release is ex-
pensive. Every year in the University of Florida (UF) strawberry 
breeding program, about a hundred crosses are made in the 
anticipation of superior fruit quality and better resistance to 
diseases. It takes a year to obtain performance data on progeny 
and make informed crossesfor the next year. If the genetic po-
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tential of future progeny can be estimated prior to field evalua-
tions, increased genetic gains can be realized and resources can 
be saved.

An older breeding program like that at UF can utilize years 
of accumulated phenotypic data and many generations of pedi-
gree information. Most of the elite parents descend from a few 
common progenitors in the UF strawberry breeding program, 
which helps magnify pedigree relatedness between training and 
test populations. In this article, we refer tofour training popu-
lations, T1/2013 (Trial 1: year 2013-14), T2/2013 (Trial 2: year 
2013-14), T1/2014 (Trial 1: year 2014-15) and T2/2014 (Trial 2: 
year 2014-15) [3], and a test population: T2/2015 (Trial 2: year 
2014-15). In general, T1 trials are of unselected seedlings aris-
ing from complex mating designs, and T2 trials are collections 
of advanced selections that represent the parent pool. Here we 
utilize this data to demonstrate the ability of FlexQTL™ to pre-
dict unknown QTL genotypes and phenotypes for a moderate-
effect Soluble Solids Content (SSC) locus on Linkage Group (LG) 
6A (unpublished).

Objectives of this editorial are to (1) describe the ability of 
FlexQTL™ to predict unknown QTL genotypes and phenotypes 
using the SSC locus on LG 6A as an example, and (2) demon-
strate predictive ability by correlating predicted and observed 
SSC data for the test population.

Genetic control of a trait and prediction methodology

The genetic control or architecture of a trait may range from 
single major locus to a couple of moderate effect loci to many 
small-effect loci, or any combination thereof. Before predicting 
unknown phenotypes of individuals, knowledge of the genetic 
control of a trait is vital. A genome-wide prediction approach 
is usually effective for a trait control by many small-effect loci 
as compared to Quantitative Trait Loci (QTL) based Marker-
Assisted Selection (MAS) approach with known large-effect 
marker-trait associations [6]. Several well-established statistical 
methodologies have been recommended for making genome-
wide predictions including Genomic Best Linear Unbiased Pre-
diction (GBLUP) and Bayesian methods [3,7]. However, when 
the genetic architecture of a trait includes at least one identifi-
able locus, it is valuable to have predictions of QTL alleles, their 
combinations (genotypes) and their patterns of segregation. In 
our experience, such a QTL-based approach is particularly ef-
fective for a trait controlled primarily by single locus or a couple 
of loci explaining half or more of the phenotypic variation for 
the trait.

The PBA approach using FlexQTL™ software not only detects 
QTLs but also assigns predicted QTL alleles (QQ, Qq, qq) based 
on molecular marker allele frequency, Identity By Descent (IBD) 
probabilities, and available phenotypic data accounting for all 
known pedigree relationships including immediate parents, 
grandparents, offspring, siblings and more distant ancestors 
[4,5,8-10] (Figure 1). FlexQTL™ also helps visualize segregation 
of QTL genotypes via pedigrees using Pedi map software. Where 
phenotypic data is missing but marker data is available, pheno-
types can be predicted based on the predicted QTL genotypes.

Prediction with FlexQTL™

The advantages of the PBA approach, both for QTL detection 
and QTL allele and phenotype prediction, are most apparent in 
complex population structures [11-19]. Bi-parental experimen-
tal designs are inefficient for a large breeding program like the 
UF strawberry breeding program where the number of parents 

in a crossing cycle is large and constantly changing. Most QTL 
analysis methods assume that parents are unrelated, but in 
reality, most parents in breeding populations are related. Flex-
QTL™ efficiently utilizes pedigree connections and establishes 
relatedness among parents in the most complex of population 
structures [5]. The ability of FlexQTL™ to identify inherited re-
latedness and re-evaluate pedigree relationships using IBD 
probability matrices offers superior statistical ability to estimate 
functional genotypes at a locus and their effects on a trait. 

FlexQTL™ implements phasing of marker alleles based on 
founder alleles using Linkage Disequilibrium (LD). The tracing of 
segregating marker alleles from founders to connected parents 
and progeny generates phased haplotype information for each 
individual. In addition, where marker information is missing, LD-
based estimation is utilized to impute marker alleles [20]. Flex-
QTL™ efficiently conducts linkage phasing between QTL geno-
types (QQ, Qq, qq) and marker genotypes (A/B or A/T/G/C) over 
diverse genetic backgrounds, providing vital information on the 
segregation of functional QTL genotypes throughout a breeding 
population.QTL alleles homozygous for positive effect are rep-
resented as QQ [+ +], for heterozygous effects represented as 
Qq [+ -], and homozygous for negative effects represented as qq 
[- -]. If an individual’s alleles are not represented sufficiently in 
the training population, the prediction will be poor. Thus, when 
separating datasets into training and test populations, related-
ness and representation of alleles between the two sets must 
be carefully considered.

A PBA prediction example

Soluble solids content is partly controlled by a moderate-ef-
fect QTL on LG 6A in the UF breeding program, explaining around 
8-15% of phenotypic variation.T1/2013, T2/2013, T1/2014, and 
T2/2014trials conducted in two different years are considered 
together as a training population (phenotypic and marker data 
included in analysis), and T2/2015 is considered as the test 
population (marker data only included in analysis). The training 
population includes more than 200 full-sib families with over 
1,500 individuals in total. The parents and/or grandparents of 
the test population individuals are pedigree-connected to the 
training population. This allows dynamic multi-directional flow 
of allele information between training and test populations. An 
example of multi-directional flow of allele information is pre-
sented in Figure 1.

The test populationT2/2015is comprised of approximately 
200 selections, the parents of which were represented by nu-
merous half-sibs in the training population. FlexQTL™ simula-
tions were implemented according to [12] using 13 SNP markers 
spanning the QTL region, and SSC QTL genotypes and pheno-
types predicted. In order to estimate Predictive Ability (PA), a 
Pearson correlation was conducted between observed and pre-
dicted SSC data. A positive (r=0.21) and significant (p=0.0027) 
correlation was observed (Figure 2).

In addition, Fisher’s Least Significant Difference (LSD) test 
was conducted to separate observed mean values of each of 
the predicted QTL genotype classes, and a significant separation 
(p<0.05) between phenotypic means of each of the QTL geno-
type classes was observed (Figure 2) [21]. A predictive ability 
(PA) of 0.21 in genome-wide depends on the context such as 
population size and diversity, trait heritability and the goal of 
the study. Given the low to moderate heritability of this trait, 
we consider 0.21 high enough to warrant further study.
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We believe that as the UF strawberry program accumulates 
more genotypic and phenotypic data over the years, training 
populations will grow in size and scope and prediction of un-
known QTL genotypes and phenotypes will be more precise. 
These results hold great value to the UF strawberry breeding 
program as UF no longer conducts stage-1 replicated trials [3] 
and information on genetic potential of parents will inform 
cross combinations. This method is being explored for other 
traits as well. 

Figures

Figure 1: A hypothetical representation of hierarchical trans-
mission of QTL genotypes (QQ, Qq, qq) via small pedigrees of 
five grandparents (top panel; A to E), three crosses among four 
parents (middle panel; F to I), and their progeny (bottom panel). 
Dotted lines indicate progeny from a test population. A black 
dotted box in the middle panel highlights parents “G” and “H” 
used to generate the test population and theirQTL genotypes. 
Pink and blue arrow represent maternal and paternal sources, 
respectively. Q and q are QTL alleles and different colors of QTL 
alleles help trace them via pedigrees.

Figure 2: Pearson correlation between predicted and ob-
served soluble solids content (SSC) for the test population, 
T2/2015. Dashed lines represent observed means of individu-
als grouped by predicted QTL genotype, and letters represent 
separations of observed means.

Conclusion 

Until now the PBA approach using FlexQTL™ has been em-
ployed only for the detection of QTLs and QTL allele analysis for 
various traits using full phenotypic and marker data [10,22-30]. 
Here we have explored the ability of FlexQTL™ to predict QTL 
genotypes and unknown phenotypes where only marker data is 
available. Preliminary results indicate that it can be a valuable 
tool to make DNA-informed breeding decisions.

Based on our experience, several points should be consid-
ered:

1) Traditional genome-wide prediction approaches do not 
usually isolate the effects of discrete QTL or predict QTL geno-
types; however, QTL genotype information from FlexQTL™ can 
be used as fixed effect for better genome wide predictions using 
traditional genomic selection models.

2) Predicted QTL genotypes can be utilized, not only for par-
ent selection to achieve the highest progeny mean, but also to 
predict phenotypic variances of crosses based on predicted QTL 
genotype ratios of progenies. If effective, prediction of cross 
variance would be a unique contribution to the field of genomic 
prediction.

3) An important point to mention is that FlexQTL™ requires 
a genetic or physical map, which is a limitation for some crop 
species as compared to GBLUP or Bayes B methods, which do 
not require marker positions.

4) This methodology will be most advantageous for QTL with 
moderate effects as opposed to major loci explaining most of 
the genetic variance for a trait. In the case of a major locus, a 
single marker in the QTL region is likely to explain the pheno-
typic variance. In the case of a moderate-effect QTL such as the 
SSC QTL in this example, FlexQTL™ accounts for the segregation 
of the 13 SNPs in the QTL region across pedigrees, making QTL 
predictions that would be almost impossible manually.

5) Continuing with this line of reasoning, the value of Flex-
QTL™ should be highest in cases of multiple discrete QTL con-
trolling a trait, which can be simultaneously predicted using this 
software. 

In summary, FlexQTL™ provides exciting new possibilities for 
predictive breeding applications that should be especially valu-
able for traits controlled by one or more moderate-effect QTL.
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