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Introduction

Melanin, a naturally occurring pigment, is widely found in 
various living organisms and possesses a range of functional 
properties and biological activities. The name “melanin” derives 
from the ancient Greek word “melanos,” meaning black, due to 
its characteristic black or dark brown appearance [14]. Melanin 
is chemically stable and insoluble in most solvents, making it 
resistant to chemical degradation. It exhibits heterogeneity in 
composition, size, colour, function, hydrophobic character, and 
large molecular weight, with a significantly negative charge, 
often pigmented and is formed by oxidative polymerization of 
indolic and phenolic compounds [117].

The unique molecular structure of melanin contributes to 
its exceptional stability, rendering it resistant to various de-
structive physicochemical processes. Melanin is described as 

a heterogenic polymer of phenolic or indolic nature. It is syn-
thesized through the oxidative polymerization of phenolic com-
pounds, primarily by two pathways. One pathway involves the 
use of a 1,8-Dihydroxynaphthalene (DHN) intermediate, while 
an alternative pathway utilizes L-3,4-dihydroxyphenylalanine 
(L-dopa) in certain fungi, resulting in different types of mela-
nin such as eumelanin, pheomelanin, allomelanin, pyomelanin, 
and neuromelanin, based on the chemical composition of the 
monomer subunit structure [43,100]. Enzymes responsible for 
melanin synthesis mainly belong to the tyrosinase, laccase, and 
polyketide synthase families [118]. Melanin can be found in the 
cell walls of certain fungi, appearing as a distinct layer on the 
outside or associated with the fibrillar matrix of the cell walls. 
Additionally, extracellular melanin exists outside fungal cells 
and is separate from the cell wall-bound melanin [140].
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Melanin plays diverse and crucial roles, serving as a survival 
strategy for organisms inhabiting unfavourable environmental 
conditions. It affects fungi throughout their life cycle, providing 
protection against UV radiation, heavy metals, desiccation, hy-
drolysis enzymes, oxidative agents, heat, cold, and fungicides. 
Melanin also acts as an effective chelator of metal ions, safe-
guarding cells from potentially toxic ions and as a thermoregu-
lator in many fungi [115]. In fungi, melanization is observed in 
cell walls, spores, vegetative hyphae, and fruiting bodies. Mela-
nin deposition protects pigmented cells from physical and bio-
logical stress, prevents toxin entry, and minimises metabolite 
leakage [121]. Importantly, melanin contributes to the virulence 
of pathogens by reducing susceptibility to host antimicrobial 
mechanisms and influencing the host’s immune response to 
infection [77].

This review will commence with an introduction to melanin, 
encompassing its chemical composition, biosynthesis process, 
and distribution within organisms. Subsequently, our attention 
will be directed towards elucidating the pivotal role of mela-
nin in bolstering the functional and biological aspects of fungal 
pathogens, ultimately enhancing their virulence.

Structure and types of melanin

Melanin is a pigment that is found in various forms in differ-
ent organisms, including fungi. Fungal melanins can be classi-
fied into different types based on their sources and chemical 
properties, such as eumelanin, pheomelanin, neuromelanin, 
allomelanin, and pyomelanin. These melanins share common 
characteristics, including broad optical absorption, resistance 
to strong acids, insolubility in most solvents, and stable free-
radical populations.

In fungi, melanin biosynthesis can occur through various 
biochemical pathways or involve different precursor compo-
nents. Some of the classes of fungal melanins that have been 
described include γ-Glutaminyl-3,4-Dihydroxy-Benzene (GDHB), 
L-DOPA, 1,8-Dihydroxynaphthalene (DHN), catechol-melanin, 
pnnnnnnnnnn, paminophenol (PAP)-melanin, as well as het-
erogeneous melanins. Two recently reported melanins are the 
Fusarium graminearum periderm melanin and the Asp-melanin 
found in Aspergillus terreus. The melanin in the periderm of 
Fusarium graminearum perithecia is based on 5-deoxybostry-
coidin, which is synthesized from the reaction of anhydrofusa-
rubin derivatives and ammonia. This melanin contributes to the 
protective function of the perithecia. Asp-melanin is present in 
the conidial wall of Aspergillus terreus, and its precursor is 4-hy-
droxyphenylpyruvate. This precursor is oxidized to generate po-
lymerized aspulvinone E derivatives, resulting in the formation 
of Asp-melanin [48]. These different types of melanins in fungi 
play important roles in various biological processes, including 
protection against environmental stresses, pathogenicity, and 
virulence [40].

a.	 Eumelanin is a black-to-brown pigment found in human 
black hair and cuttlefish ink. It is formed by the oxidation 
of l-tyrosine or l-dopa through 5,6-Dihydroxy Indole (DHI) 
or 5,6-Dihydroxyindole-2-Carboxylic Acid (DHICA) [36].

b.	 Pheomelanin consists mainly of sulphur-containing ben-
zothiazine and benzothiazole derivatives. It is found in red 
hair, feathers, and freckles. L-cysteine is the chief source 
of sulphur, which is essential for the synthesis of phe-
omelanin [93].

c.	 Neuromelanin is believed to be formed by the oxidative 
polymerization of dopamine or noradrenaline, possibly 
involving cysteinyl derivatives. It is mainly found in the 
human brain [38].

d.	 Allomelanin is formed by the oxidation of polyphenols 
such as catechols and 1,8-dihydroxy naphthalene. It is of-
ten nitrogen-free and is found in most fungi [118].

e.	 Pyomelanin is a dark-coloured pigment derived from Ho-
mogentisic Acid (HGA). It is found in fungal metabolites, 
specifically in Pseudomonas and Aspergillus fumigatus. 
Pyomelanin is an extracellular red-brown pigment [132].

Location and biosynthesis of melanin in the fungal pathogen

Melanin, a polymerized bio-pigment derived from indole or 
phenolic compounds, plays a crucial role in the virulence and 
survival of fungal pathogens. Although fungal melanin is formed 
inside the cell, it is transported to different parts and depos-
ited with the assistance of specialized vesicles known as fungal 
melanosomes. The function of melanin varies depending on its 
deposition site, contributing to the organism’s dominance. Ad-
ditionally, the localization of melanin changes in different or-
ganisms as they progress through developmental stages. Mel-
anin’s presence in these locations provides structural support 
and protects fungal cells against environmental stresses and 
immune responses [30].

Fungal melanin is primarily found in the cell wall and plas-
ma membrane. In the cell wall, it is either embedded within 
the wall’s structure or forms the outermost layer.  Melanin can 
also be present extracellularly, extending from the fungi’s cell 
wall, known as cell wall-bound melanin. Studies have revealed 
that fungal cell wall melanin can be either granular or fibrillar 
in nature. For example, Cryptococcus neoformans has been ob-
served to have a complex layer of granular melanin, measur-
ing 40-130 nm in diameter, in its cell wall, as demonstrated by 
scanning electron microscopy and atomic force microscopy 
[32]. Verticillium spp.’s microsclerotia are covered with a layer 
of both granular and fibrillar melanin [143]. Phaeococcomyces 
sp, a black yeast fungus, release cell wall melanin and exocel-
lular melanin as granules.

Fungi produce heterogeneous vesicles containing lipids, 
carbohydrates, and proteins. These vesicles play a crucial role 
in localizing intracellularly produced melanin to the cell wall 
and extracellular space [112]. In Cryptococcus neoformans, in-
creased vesicular secretion corresponds to increased virulence 
[111]. Laccase, a key component responsible for vesicular mela-
nization, is loaded inside the vesicles and can be systematically 
trapped in the cell wall, forming layers of melanin. These mel-
anin-loaded vesicles, referred to as fungal melanosomes, vary 
in size and number. Candida albicans has been found to have 
fungal melanosomes that contribute to their virulence and sur-
vival [136]. Evidence suggests that fungal melanization occurs 
in specialized vesicles analogous to mammalian melanosomes 
[33,37,41,136]. In the appressoria of Colletotrichum lagenari-
um, multiple melanin layers have been identified in the cell wall 
[123]. In the rice blast fungus Magnaporthe grisea, the melanin 
layer is localized just outside the plasma membrane of appres-
soria [56]. The deposition of melanin in the appressoria of M. 
griesea helps retain glycerol, generating high osmotic pressure, 
which aids in penetrating the host cell wall and establishing the 
fungi successfully [68]. Melanin lines the septa and outer walls 
of wild-type Altern.



MedDocs Publishers

3Journal of Plant Biology and Crop Research

Fungal melanin biosynthesis

Diverse types of melanin found in fungi, the two most signifi-
cant variants are DHN-melanin and DOPA-melanin. DHN-mel-
anin derives its name from the pathway intermediate, 1,8-di-
hydroxy naphthalene, while DOPA-melanin is named after one 
of its precursors, L-3,4-dihydroxyphenylalanine (Hamilton and 
Gomez 2002) [62].

The DHN-Melanin biosynthesis pathway

In certain plant-pathogenic fungi, such as Colletotrichum la-
genarium and Magnaporthe oryzae, DHN melanin serves as a 
virulence factor. However, in other fungi, DHN melanin found 
on conidia, hyphae, and sclerotia primarily functions as a stress 
protectant [152]. The DHN-melanin biosynthesis pathway has 
been elucidated in Verticillium dahlia and Wangiella dermatiti-
dis through genetic and biochemical evidence. This involved the 
identification of key pathway intermediates and shunt products 
using techniques like Thin Layer Chromatography (TLC) and 
High-Pressure Liquid Chromatography (HPLC) [49,142].

The production of DHN-melanin occurs through the penta-
ketide melanin pathway. The initial step involves the conver-
sion of malonyl-CoA by Polyketide Synthase (PKS1) into the 
first detectable intermediate, 1,3,6,8-Tetrahydroxynaphthalene 
(1,3,6,8-THN) [1,44]. A specific reductase enzyme then reduc-
es 1,3,6,8-THN to produce scytalone. Enzymatic dehydration 
of scytalone results in the formation of 1,3,8-trihydroxynaph-
thalene [4.5]. This tricyclic compound is further reduced by 
a reductase enzyme to form vermalone [8,125]. Vermalone, 
through subsequent dehydration catalyzed by scytalone dehy-
dratase, leads to the production of 1,8-Dihydroxynaphthalene 
(DHN) [10]. Finally, the dimerization of 1,8-dihydroxynaphtha-
lene and its polymerization by laccase results in the production 
of melanin [12].

It is important to note that the melanin biosynthesis path-
way varies among different fungi, and several byproducts have 
been detected through TLC and HPLC methods. For instance, 
the reductase inhibitor tricyclazole causes the accumulation of 
flaviolin, a shunt product of 1,3,6,8-THN, and inhibits the pro-
duction of another shunt product, hydroxyjugalone, from scy-
talone [125,126].

Numerous genes involved in fungal DHN-melanin synthesis 
have been identified. Scientists have discovered gene clusters 
responsible for encoding the enzymes involved in DHN-biosyn-
thesis, such as in Alternaria alternata and Aspergillus fumiga-
tus, where three and six genes were identified, respectively 
[15,72,76]. The first step in DHN-melanin synthesis, catalyzed 
by Polyketide Synthase (PKS), is coded by different genes in dif-
ferent fungi. For example, in Aspergillus fumigatus, the pksP 
gene codes for PKS, and a mutation in this gene results in pink-
colored conidia, while the wild type produces grey-green co-
nidia [76,129]. 

DOPA-Melanin biosynthesis

Bell and Wheeler proposed the biosynthetic pathway for 
fungal DOPA-melanin biosynthesis in 1986. The enzyme tyrosi-
nase or laccase plays a propounding role in the pathway. They 
catalyse the hydroxylation of L-tyrosine or L-DOPA to dopa-
quinone which is the first intermediate in the pathway and is 
highly reactive in nature [98]. In the absence of thiols cyclisa-
tion of dopaquinone results in leucodopachrome which is then 
oxidised to form dopachrome. Dopachrome upon hydroxylation 

and decarboxylation forms dihydroxyindoles which polymerise 
to yield DOPA-melanin [94,145]. This biosynthetic pathway for 
DOPA-melanin strongly resembles the pathway found in mam-
malian cells. DOPA-melanin of mammalian consists of both eu-
melanin which does not contain the thiol group and pheomela-
nin which contains the thiol group [95]. The DOPA-melanin 
produced by Cryptococcus neoformans contains only eumelanin 
not pheomelanin and only the enzyme laccase catalysed the ini-
tial step in the biosynthetic pathway [144,145].

Melanin in fungal virulence

The production of melanin has long been recognized as a vir-
ulence factor in both bacterial and fungal pathogens. It serves 
various functions that contribute to the pathogen’s ability to 
cause disease. Melanin helps prevent plasmolysis, maintain 
membrane permeability, and sustain high internal solute con-
centrations, which are crucial for maintaining turgor pressure 
and cell integrity.  In the context of plant pathogens, melanin 
has been identified as a virulence factor in several fungal spe-
cies. Melanized strains of fungi exhibit enhanced penetration 
of host tissues, higher rates of colonization, and increased pro-
duction of appressoria (in the case of certain fungi) compared 
to non-melanized strains. These characteristics contribute to 
the pathogen’s ability to establish infection and cause disease 
in plants. Melanin also plays a role in evading host defense 
mechanisms. It provides protection against the host’s immune 
responses by interfering with the recognition and response to 
Pathogen-Associated Molecular Patterns (PAMPs) by the host’s 
pattern Recognition Receptors (PRRs). Additionally, melanin is 
resistant to defensive compounds produced by the host, such 
as phytoalexins, defensins, and antimicrobial peptides. It acts 
as a free radical scavenger, neutralizing Reactive Oxygen Spe-
cies (ROS) produced by the host as part of its defense response. 
Melanin-coated spores of some fungal pathogens can evade 
recognition by the host’s immune system and pathogenesis-
related proteins, thereby facilitating infection [25,153].

Penetration into the plant host: Melanin plays a crucial role 
in the penetration of fungal pathogens into plant cells. Appres-
soria, the infection structures produced by many fungal patho-
gens, undergo melanization, which is necessary for their at-
tachment to plant surfaces. During appressorium maturation, 
glycogen and lipids translocate from the conidium to the ap-
pressorium, and melanin aids in glycerol accumulation within 
the appressorium. This accumulation leads to the generation of 
high osmotic turgor pressure, allowing the penetration peg to 
puncture the epidermal cuticle and cell wall, facilitating entry 
into the plant [69,102].

Overcoming plant defense: Melanin also helps fungal patho-
gens in evading host immune responses. The synthesis of mel-
anin in fungal pathogens like Alternaria alternata inhibits the 
recognition and response of the host defense system. Melanin 
interferes with the recognition of Pathogen-Associated Mo-
lecular Patterns (PAMPs) by host Pattern Recognition Peceptors 
(PRRs), thereby impairing the activation of immune respons-
es. Additionally, melanin is resistant to defensive compounds 
produced by plants, such as phytoalexins, defensins, and an-
timicrobial peptides. Melanin acts as an effective free radical 
scavenger, neutralizing Reactive Oxygen Species (ROS) gener-
ated during the defense response. It also exhibits superoxide 
dismutase and catalase activities, further contributing to ROS 
detoxification [2,23,101,119].
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Associated with the production of hydrolytic enzymes: Mel-
anin is associated with the production of hydrolytic enzymes in 
some fungal pathogens. Enzymes like ribonuclease, deoxyri-
bonuclease, acid phosphatase, and phenoloxidase have been 
detected in extracellular melanoprotein secreted by the apple 
scab pathogen Venturia inaequalis. These enzymes interact with 
melanin in the cell walls and are believed to retain their activ-
ity. The concentration of melanin-retained hydrolytic enzymes 
may facilitate more intensive entry-lesion action, increasing the 
virulence of the pathogen [52].

Resistance to antagonistic organisms: Melanin provides fun-
gal cells with resistance against antagonistic organisms. Mela-
nized fungal cells are less susceptible to cell wall-degrading en-
zymes produced by environmental antagonists. The melanin 
content of fungal cell walls is inversely related to their suscep-
tibility to enzymatic hydrolysis. Melanin-bound chitin, a com-
ponent of fungal cell walls, is extremely resistant to enzymic 
degradation. The presence of melanin in fungal walls confers 
resistance to lysis by hydrolytic enzymes, possibly through se-
questration of the enzymes on melanin or steric hindrance. This 
resistance allows melanized cells to survive longer and be more 
resilient to environmental challenges, contributing to their 
dominance in soil ecosystems [10,61,75].

Melanin beyond fungal virulence

The production of melanin in fungal pathogen acts as a pro-
tective mechanism against environmental stressors. Melanin 
acts as a physical barrier to protect pathogens from harmful 
Ultraviolet radiation (UV), extreme temperatures and oxida-
tive stress [19]. This protection allows pathogens to survive and 
maintain virulence under adverse conditions.

Cell wall reinforcement: In plant pathogens like Phytoph-
thora infestans, melanin deposition in the cell wall reinforces 
its structural integrity, maintaining cell shape and protecting 
against mechanical damage from host defense mechanisms 
[71,91]. Melanin also contributes to the impermeability of the 
pathogen’s cell, making it more resistant to antimicrobial com-
pounds produced by the host [26,50].

Photoprotection: Melanins also enable organisms to resist 
UV, solar, or gamma radiation. Organisms like Monilinia fructi-
cola [108], A. alternata, and Cladosporium sp [90,151] produce 
melanins that absorb a wide range of the electromagnetic spec-
trum, preventing photo-induced damage [53]. Bacteria such as 
Bacillus subtilis, Bacillus thuringiensis, Bacillus sphaericus, and 
Pseudomonas aeruginosa produce melanin, which protects 
them against UV irradiation, hydrogen peroxide, pesticides, and 
oxygen fluctuations [24,55,109,114]. Melanin synthesis in B. 
subtilis, facilitated by the laccase enzyme CotA, is particularly 
important in providing resistance to injury [60].

Antioxidant: Melanins possess strong antioxidant properties 
and can scavenge radicals. They exhibit stable free radical be-
havior due to unpaired electrons, making them responsive to 
magnetic fields and paramagnetic in nature. Melanins can also 
participate in the oxidation or reduction of metals, and fungal 
melanins have been used as templates for synthesizing metal 
nanoparticles [6].

Energy harvesting: Fungal melanin exhibits the ability to 
absorb radiation energy and convert it into metabolic energy 
[27,110,131,133]. This phenomenon has been observed in 
studies where irradiation of melanotic fungi with gamma rays 
or UV/V radiation resulted in enhanced metabolic activity, in-

creased growth rates, and changes in cellular ATP levels [16]. 
The electroconductive properties of fungal melanin make it 
attractive for applications in bioelectronics and sustainable 
electronics [3,147]. Thus, fungal melanin serves as an energy-
harvesting pigment and holds potential implications in various 
fields due to its ability to transduce radiation energy and its 
electroconductive characteristics.

Protection against heat and cold stress: Melanin plays a 
crucial role in thermoregulation and protection against heat 
stress in fungi. Melanin-deficient mutants of certain fungi, such 
as Monilinia fructicola, have shown increased susceptibility to 
high temperatures and other stressors [108]. Conversely, mela-
nization has been found to enhance tolerance to both heat and 
cold stress in species like Cryptococcus neoformans, potentially 
by quenching heat-induced Reactive Oxygen species (ROS) or 
buffering heat flux [113]. Also, melanized endophytes associ-
ated with plants contribute to thermoregulation by dissipating 
heat and absorbing ROS [107]. Furthermore, the synthesis of 
melanin in fungi is temperature-regulated, highlighting its sig-
nificance in fungal thermoregulation and stress response.

Metal binding: Fungal melanins possess metal-binding 
capacity and can bind various metals, including Cu2+, Ca2+, 
Mg2+, and Zn2+, triggering melanogenesis in certain species 
[20,85,88,149]. This metal-binding property allows fungal mela-
nin to scavenge essential metals from rocks and environmental 
sources [39,45]. It has been suggested that melanin can protect 
fungi from heavy metal toxicity in some cases [47,54], although 
contradictory results have been reported [42]. The metal-bind-
ing capabilities of fungal melanin contribute to metal bioab-
sorption and potentially provide protection against heavy metal 
toxicity.

Resistance to mechanical and chemical stress: Melanin de-
position also enhances cell strength, rigidity, and chemical sta-
bility in fungi [91]. It forms crosslinks with macromolecules near 
the cell wall, influencing cell permeability, turgor forces, and pro-
tection against chemical degradation and heavy metal toxicity 
[47]. Melanization also contributes to higher resistance against 
hydrolytic enzymes and osmotic stress [14]. However, certain 
melanolytic fungi can biodegrade melanin using enzymes such 
as manganese and lignin peroxidases [18,67,81,106]. Notably, 
certain mould species inhibit enzymatic degradation due to the 
presence of melanin, emphasizing the complex relationship be-
tween melanin, enzymatic degradation, and fungal species, and 
underscoring the diverse role of melanin in ensuring cell protec-
tion and stability.

Protection against desiccation: Additionally, fungal mela-
nization plays a vital role in protecting and adapting to dry 
conditions in microorganisms such as Cenococcum geophilum 
and Armillaria mellea [130,151]. Inhibition of melanin synthe-
sis increases susceptibility to osmotic stress and desiccation. It 
contributes to the absorption and retention of water, thereby 
controlling water balance and enhancing resistance to desicca-
tion (Jastrzebska et al.1996). Additionally, melanization alters 
the porosity of the cell wall, potentially influencing osmolyte 
exchange and reducing water loss [56,63,73]. Overall, fungal 
melanin serves as a survival mechanism and contributes to the 
ability of microorganisms to thrive in dry environments.

Cell development: Fungal melanin, while not essential for 
growth, plays a crucial role in normal cell development in vari-
ous fungal species. It is particularly important in filamentous 
species that produce melanized structures such as appresso-
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ria, sclerotia, conidia, and reproductive structures [10,19,42]. 
Melanin biosynthesis is associated with healthy conidiation and 
germination, and disruptions in melanin production can lead to 
alterations in conidial morphology, cell wall integrity, and sur-
face morphology. Examples include Pestalotiopsis microspore 
[148], Aspergillus fumigatus [76,127], Chaetomium globosum 
[58], Alternaria alternata (Kawamura et al.1997), and Bipolaris 
sorokiniana (Bashyal et al.2010). Melanin can constitute a sig-
nificant portion of the dry weight of a cell, such as up to 30% in 
the spores of Agaricus bisporus [104], representing a consid-
erable allocation of material and energy resources. It provides 
mechanical and chemical resistance to fungal structures, which 
is crucial during specific developmental stages.

Melanin in some major fungal diseases 

Black Sigatoka, caused by the fungus Mycosphaerella fijien-
sis, is a major threat to banana plantations, resulting in sig-
nificant crop losses. This fungus exhibits a high level of genetic 
diversity, aggressiveness, and resistance to fungicides and Re-
active Oxygen Species (ROS). In culture, the fungus produces a 
dark-green pigment on the surface of its colony. Interestingly, 
isogenic mutants of M. fijiensis with pink mycelium and reduced 
melanin production can still penetrate banana leaf tissue, but 
their infection is halted at an early stage. The appearance of 
necrotic lesions on leaves is believed to be a result of an overly 
sensitive defense response by the host plant [29]. It has been 
suggested that the DHN melanin produced by M. fijiensis acts as 
a virulence factor by generating singlet molecular oxygen, con-
tributing to the pathogenicity of the fungus [11].

Apple scab is caused by the hemibiotrophic ascomycetous 
fungus Venturia inaequalis (Cooke) G. Winter. This pathogen 
infects apple trees and grows as subcuticular hyphae, deriving 
nourishment from the host tissue beneath them [9]. When co-
nidia germinate on the leaf surface, they pierce the leaf cuticle 
and form subcuticular mycelia and stromata. Venturia inaequa-
lis produces a dark brown ring structure called a Melanized Ap-
pressorial Ring Structure (MARS) at the base of its appressoria, 
which acts as a sealing ring adhered to the leaf surface. Melanin 
is deposited in the outer layer of the cell wall of conidia, conid-
iophores, and the appressorial ring structure. The synthesis of 
melanin is associated with cell wall stiffness, the aggressiveness 
of the fungus towards the host plant, and its sensitivity to vari-
ous xenobiotics. Melanin-deficient mutants of Venturia inae-
qualis exhibit decreased cell wall stiffness, reduced aggression 
towards the host plant, and increased sensitivity to xenobiotics 
[122].

Take-all, a root disease affecting wheat and barley in temper-
ate zones, is caused by the fungus Gaeumannomyces graminis 
var. tritici. This fungus produces DHN melanin and initiates root 
infection through melanized ectotrophic “runner” hyphae. The 
runner hyphae must be melanized to anchor themselves or pro-
duce invasive infection hyphae [30]. Melanin deposition in the 
fungal cell wall is related to the production of intracellular pres-
sure. Melanized wild-type hyphopodia of G. graminis var. grami-
nis generate significantly higher turgor pressures (1.22 MPa) 
compared to nonmelanized hyphopodia strains (0.04 MPa). The 
increase in pressure during hyphopodial development and pig-
ment deposition supports the association between melanin and 
hyphopodial turgor. Melanization of the cell wall also contrib-
utes to its rigidity [91].

Anthracnose, caused by pathogenic fungi such as Colletotri-
chum lindemuthianum and C. lagenarium, requires DHN mela-

nin for the appressoria to penetrate and establish within plant 
cells. In C. graminicola, melanin is synthesized through the 
pentaketide pathway via the polyketide synthase 1 (CgPKS1) 
gene, which shares similarities with fungal polyketide synthases 
involved in the synthesis of 1,3,6,8-tetrahydronaphthalene, an 
intermediate in melanin biosynthesis. Nonmelanized appres-
soria of C. graminicola are sensitive to externally applied cell-
wall-degrading enzymes, while melanized appressoria are not 
affected. Melanin is not necessary for turgor generation but 
enhances cell-wall rigidity in appressoria of the corn pathogen 
Colletotrichum graminicola [83].

Rice blast, caused by the fungus Pyricularia oryzae, poses a 
significant threat to global rice and wheat production. Conidia-
tion and appressorium formation are crucial steps in the infec-
tion cycle of this pathogen. Blast disease spreads among plants 
through conidia, and the fungus infects plants via appressoria. 
The DHN melanin layer acts as an impermeable barrier for ap-
pressoria, allowing them to generate the high turgor pressure 
required for penetration through the plant cuticle, enabling the 
infection peg of P. oryzae to enter the plant fully [56].

Grey mould, caused by Botrytis cinerea, is a significant fungal 
plant pathogen that affects over 200 plant species worldwide, 
leading to grey mould disease. Due to melanin accumulation 
in its tissues, this fungus typically produces grey-coloured my-
celia, conidia, and sclerotia [22]. Melanin, specifically 1,8-dihy-
droxynaphthalene (DHN) melanin, is deposited on the cell walls 
of conidia, hyphae, and sclerotia. In B. cinerea, DHN melanin 
primarily functions as a stress protectant rather than a patho-
genicity or virulence factor [116].

Black rot, caused by Phyllosticta spp, poses a threat to 
grapevine and citrus production. All Vitis vinifera cultivars are 
highly susceptible to black rot. This polycyclic disease involves 
repeated cycles of primary and secondary infections [150]. Mel-
anin-dependent increase in the stiffness of the appressorium 
cell wall in Phyllosticta spp. contributes to their resistance to 
collapsing during periods of desiccation and osmotic imbalance 
[74].
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Figure 1: The chemical structure of different types of melanin.
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Figure 2: DHN- Melanin biosynthesis pathway.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3: Diverse functions of fungal melanin.

Conclusion

Melanin plays a significant role in plant pathogenic fungi, 
contributing to their pathogenicity and survival. Melanin pro-
duction in these fungi provides protection against various envi-
ronmental stresses, including UV radiation, oxidative stress, and 
host defense mechanisms. Additionally, melanin can enhance 
fungal virulence by promoting adhesion, penetration, and eva-
sion of the host immune response. The synthesis and regula-
tion of melanin in plant pathogenic fungi are complex processes 
influenced by genetic factors and environmental cues. Under-
standing the mechanisms underlying melanin production in 
these fungi can provide valuable insights into developing effec-
tive strategies for controlling plant diseases. Further research is 
warranted to unravel the specific functions and interactions of 
melanin in plant-fungal interactions, paving the way for the de-
velopment of targeted management approaches in agriculture.
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