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Abstract

The presence of missing data is a persistent issue that 
researchers, data analysts, and statisticians must address 
in their work. As a result, a number of methods have been 
developed for dealing with it, from simple single imputation 
schemes, to complex models based on multiply imputed 
data. A common assumption among most of these methods 
is that the information necessary to impute the data under 
a presumption of randomness is available. Given that this 
assumption holds, several approaches for imputing missing 
values, including Multiple Imputation by Chained Equations 
(MICE) have been shown to be very effective for dealing 
with missing values. However, when this assumption does 
not hold, MICE and other imputation methods are not so 
effective, and may produce imputed data that yields biased 
results. In order to address this issue, several methods have 
been developed for the case where data are Missing not at 
Random (MNAR). This simulation study compared two ap-
proaches for handling MNAR data for a dichotomous vari-
able in the context of logistic regression. The results show 
that an approach based on the Heckman selection model, 
and adapted for the MICE context, as well as an adapted 
Ibrahim Lipsitz method performed well, producing data that 
results in relatively low estimation bias and high confidence 
interval coverage rates. Implications of these findings are 
discussed.

Introduction

Missing data are a ubiquitous problem in virtually all areas 
of research, from the social sciences, to health care, economics, 
and biology. The presence of missing data can have deleterious 
impacts on statistical procedures in the form of parameter esti-
mation bias, inflated standard errors, and inaccurate hypothesis 
test results [1]. Given its ubiquity, as well as the potential nega-
tive impacts that it can have on statistical analyses, researchers 
must make decisions regarding how to deal with it. Such deci-
sions need to account for both the type and amount of missing 
data, and typically include some form of imputation, or replace-
ment of the missing values with a reasonable approximation 

of what the value would have been were it not missing. This 
process is complicated by the fact that the presence of missing 
data may have a myriad of causes, and that different methods 
for handling it are more appropriate in different situations. The 
purpose of this manuscript was to investigate and compare the 
performance of two approaches for dealing with missing data 
in perhaps the most difficult situation, where the data are miss-
ing not at random. The manuscript is ordered as follows. First 
is a brief description of the various types of missing data, af-
ter which the methods used to deal with the missing data are 
described. Next, prior research examining the performance of 
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these methods is discussed, and the goals of the current study 
are then outlined in light of this prior work. The Monte Carlo 
simulation methodology is then described, followed by the re-
sults of the study, and then a discussion of these results, and 
their implications for practice.

Types of missing data

Missing data are typically described as coming from one of 
three sources: Missing Completely at Random (MCAR), Missing 
at Random (MAR), and Missing not at Random (MNAR). MCAR 
occurs when there is no systematic cause to a data value being 
missing. For example, an MCAR item response was left blank 
by the respondent completely by accident. With MAR, the vari-
able associated with the missing value has been measured by 
the researcher. For example, if males are more likely to leave 
an item on a survey unanswered, and the researcher has col-
lected data on the gender of the respondents, then the missing 
values would be considered MAR. Finally, MNAR occurs when 
the missing data are directly linked to the missing value itself. 
In other words, there is no information in the dataset regarding 
the missing data mechanism (unlike with MAR), nor are the val-
ues missing due solely to randomness (as with MCAR). MNAR 
data might occur if a respondent taking a survey leaves an item 
unanswered because they did not want to reveal their actual 
answer. MNAR data, and methods for dealing with it are the fo-
cus of the current study, specifically in the context of logistic re-
gression for a binary response variable. There exist a number of 
methods for dealing with missing data. These approaches range 
from only using observations for which all of the relevant vari-
ables have values present, to complex model based approaches 
for estimating what the missing values would have been. One 
of the most common missing data methods is Listwise Dele-
tion (LD), where all cases that have missing data are removed 
from the dataset, and then data analyses are conducted on this 
subset of complete data. Numerous studies have demonstrated 
that LD is not an optimal approach for dealing with missing data 
in most situations, as it leads to biased parameter estimates, 
low power, and inflated standard errors in many situations [1]. 
In contrast to LD, as well as simple techniques such as mean 
or regression imputation, more complex approaches based on 
multiply imputing missing values have been found to work well 
for MCAR and MAR data [1-3]. Examples of these approaches in-
clude full information maximum likelihood [4], multiple imputa-
tion using joint models [5], multivariate imputation by chained 
equations [6], and predictive means matching [7]. Data imputa-
tion techniques work by replacing missing values with estimates 
of what the values might have been based upon information 
from the non-missing observations of the variable itself, as well 
as from measured variables in the dataset. For example, miss-
ing values to a survey question asking respondent income might 
be accurately imputed if we know their age, level of education, 
and employment status. Multiple imputation methods work by 
creating multiple datasets containing such imputed values with 
some error added in, to reflect our uncertainty regarding the 
actual value. Several studies have supported the utility of the 
chained equations approach to imputation in a wide variety of 
situations [8], and for that reason it will be discussed in more 
detail below.

Multivariate Imputation by Chained Equations

Multivariate Imputation by Chained Equations (MICE), also 
known as fully conditional specification or sequential regression 
multiple imputation, is a multiple imputation technique that has 
been shown to be quite useful in practice [6,9]. MICE does not 

make any assumptions regarding the joint probability distribu-
tion of the set of variables for which imputation must be done, 
but rather works under the assumption that each variable in the 
dataset has its own unique marginal distribution [6]. The spe-
cific distribution to be used for a variable with missing data to 
be imputed is selected so to be appropriate to its type (i.e., nor-
mal, binomial, multinomial, Poisson). For example, if the vari-
able is binary, a logistic regression model will be used, whereas 
if the variable is continuous the missing data is modeled based 
on ordinary least squares regression. MICE does work under the 
assumption that missing data are MAR. It has been shown to 
yield data resulting in biased parameter estimates when data 
are MNAR [10]. MICE functions under a six-step process, as de-
scribed by [10].

1.  Replace each missing value in the dataset with a simple 
imputation, such as a random draw from the sample.

2.  These place holder imputations are then set back to miss-
ing for a target variable, y.

3.  The observed values for y are regressed on the other vari-
ables in the data (or any other variables the researcher 
would like to use for imputation), using an appropriate 
model (e.g. binary logistic regression for dichotomous 
variables.

4.  Missing values for y are replaced by random draws from 
the probability distribution implied by the model fit in 
step 3, using the Gibbs sampler. In other words, impu-
tations for the target variable 1

1
ty +  are drawn from the 

probability distribution defined by the regression model 
as 1 2 3( | ,. ,..., )t t t

kP y X X X , where the Xt are the other 
(nontarget) variables in the dataset used to fit the model, 
and the imputed value of y is drawn from the appropriate 
(e.g. normal) probability distribution conditioned on the 
predictors in the regression model.

5.  Steps 2-4 are repeated for each variable in the dataset 
containing missing data. Completing the initial imputa-
tions for all variables in the dataset constitutes a single 
iteration. 

6.  Steps 2-5 are then repeated for a given number of itera-
tions (e.g. 40) until the imputations have converged over 
the iterations.

7.  The entire set of steps is repeated m times, where m is 
the desired number of multiple imputations.

 Once the imputation process is completed, the analysis of 
interest (e.g. regression) is used with each of the m imputed 
datasets and the parameter estimates are combined using [5] 
rules. Given the research supporting its use in a wide variety 
of contexts [11-14], particularly when data are MCAR or MAR, 
MICE will be included in the current study.

Missing data methods designed specifically for MNAR data

Ibrahim and lipsitz method

Described an approach for addressing the case when miss-
ing values are present for a dichotomous response variable, 
and the missing data mechanism is MNAR [15]. This technique, 
which will be referred to as IL going forward in this manuscript, 
was developed specifically to address bias that is known to be 
present when standard imputation approaches are applied to 
MNAR data [15]. The underlying framework of the IL approach 
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to handling missing data involves the simultaneous estima-
tion of coefficients for the standard logistic regression model 
of interest, in conjunction with an additional logistic regres-
sion model in which the response variable reflects whether the 
original dependent variable is missing for an individual. More 
formally, consider a scenario in which there is a dichotomous 
response variable, y, which can be linked to a matrix of covari-
ates, x, through a logistic regression (LR) model of the form:

( )

( )( 1| )
1

i

i

x

i i x
ep y x

e

β

ββ= =
+

     
                                         (1)

Where

iy =Response variable for subject i

ix =Matrix of covariates for subject i

β =Matrix of coefficients linking covariates to response

In addition to this standard LR model, the IL approach also in-
volves the fitting of a second LR model in which the dependent 
variable is whether subject i has a missing value for variable iy .

( )

( )( 1| )
1
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i

z
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ep R z

e

α
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+

     
                                        (2)

Where

iR =if  is missing, and 1 otherwise

iz =matrix of covariates for iR  including both ix  and iy
α =Coefficients linking iz  to iR
Together, α and β  are defined as Y , and a joint log-likeli-

hood for the data can be written as

{ }1( | ) log ( | ) ( | )n
i i i i i i i i i il Y x y z r p y x p r zβ α== Π    (3)

The parameter set Y  can then be estimated using the EM 
algorithm. Finally, it should be noted that when  is a null vec-
tor, the data are MCAR. One issue that was not addressed in the 
original description and implementation of IL was bias associ-
ated with maximum likelihood estimation of the score function 
when samples are small [16,17], introduced an adjustment to 
the score function in LR involving the multiplication of the likeli-
hood by a Jeffreys prior. Maity, Pradhan, and Das subsequently 
applied this Firth correction to the IL method, yielding the fol-
lowing joint log-likelihood 

* 1 1( | ) ( | ) log | ( ) | ( | ) log | ( ) |
2 2i i i i il Y x y z r l x y l l z r lβ β α α= + + +  

Where

| ( ) |l β =Determinant of the observed information matrix 
for β

| ( ) |l α =Determinant of the observed information matrix 
for α

The likelihood function *( | )i i il Y x y z r can then be solved 
using the EM algorithm, with the Firth correction for sample 
size incorporated into the likelihood function. This approach to 
dealing with MNAR data will be referred to as FIL henceforth in 
this manuscript.

Heckman imputation

In addition to IL/FIL, an alternative approach for handling 
MNAR data is based on work by [18] in the form of a selection 
model. Initially, the selection model was formulated in the con-

(4)

text of continuous data, where a standard regression model was 
applied to the response variable of interest, and a probit model 
was applied to the missing data mechanism. Subsequently, [19] 
extended the Heckman selection model to the case where the 
dependent variable is dichotomous, and thus ordinary least 
squares regression is not appropriate. In this context, the de-
pendent variable of interest, y, can be modeled using the probit 
link function as

( 1| ) ( )i i ip y x x β= = Φ   (5)

Where

Φ =Standard normal cumulative distribution function.

All other model terms are as defined above for equation (1).

In turn, the missing data mechanism can also be expressed in 
terms of the probit link as

( 1| ( )s s s
i i ip Ry x x β= = Φ   (6)

Where

Ry =Indicator of missingness for iy  (1 if observed, and 0 if 
missing).

s
ix =Observed covariates that are potentially associated with 

the missingness mechanism.
sβ =Coefficients for the probit model linking missing status 

with s
ix .

For the models in equations (5) and (6), it is assumed that 
there is a latent normally distributed variable associated with 
the observed realization of the dichotomous variable. These re-
lationships take the following forms.

ty =Latent normally distributed variable associated with y, 
where if 0t

iy >  1iy = , otherwise 0iy = .
t
yiR =Latent normally distributed variable associated with 

iRy , where if 0t
yiR >  1yiR = , otherwise 0yiR = . 

These latent variables can then be related to the observed 
covariates in equations (5) and (6) through standard linear re-
gression models, including separate error terms for each (𝜀𝑖

′

and 𝜀𝑖).

( )t s s t
yi i iR x β ε= +    (7)

( )t
i i iy x β ε= +    (8)

The error terms in models (7) and (8) are assumed to come 
from the standard normal distribution, and to have a corre-
lation between them of ρ . When 0ρ = , the missing data 
mechanism is MAR, as the errors for the observed variable 
and the missingness indicator are independent. On the other 
hand, when 0ρ ≠  the missing data mechanism is MNAR, 
with larger values of this mechanism being associated with a 
stronger degree of MNAR. The parameters in models (7) and (8) 
are ( , , )sθ β β ρ= , and are instrumental in the imputation 
of missing values. The selection model algorithm for a binary 
outcome variable that was proposed by [20] involves the fol-
lowing steps.

 Estimate the model parameters θ andψ , where ψ is the 
variance-covariance matrix of 𝜃� .

Draw *θ  from ( , , )N θ ψ
Draw the imputation, 𝑦𝑖∗ from a Bernoulli dstiribution with 



4Journal of Psychiatry and Behavioral Sciences

MedDocs Publishers

parameter 𝑝𝑖∗  from 
* * *

* 2
*

( , )
(

s
i i

i s s
i

X Xp
X

β ρ
β

Φ −
=

Φ −
  (9).

Finally, [20] incorporated their adaptation of the Heckman 
imputation procedure into the MICE algorithm described above. 
Specifically, the algorithm outlined above is applied to the de-
pendent variable, which is assumed to be MNAR, and standard 
MICE imputation is applied to the independent variables in the 
LR model. Thus, regression models were applied to continu-
ous covariates with missing values, and LR to binary covariates 
containing missing data. This is the approach that was used in 
the current study, and which will be referred to as MICE_MNAR 
henceforth.

Prior research into the performance of MNAR missing data 
methods

There has been some prior research conducted to examine 
the performance of these methods for dealing with MNAR data 
in the context of LR. For example, [16] examined the perfor-
mance of IL and FIL using a Monte Carlo simulation study. Their 
focus was primarily on the performance of these approaches 
with small samples, given that the purpose behind the devel-
opment of FIL was to address bias in IL when the sample size 
is small. Their simulation study included sample sizes between 
30 and 150, a LR model with 4 normally distributed covariates, 
each of which had a model coefficient of 1. The MNAR missing 
data indicator was generated using the model in equation (2), 
with  for y set to a non-zero value, which was manipulated 
to ensure that approximately 25% of the response variable val-
ues were missing for each sample size condition. Results of the 
simulation study demonstrated that across the sample size con-
ditions, FIL consistently displayed lower estimation bias, smaller 
standard errors, and higher confidence interval coverage rates 
than did IL. In nearly all of the simulated conditions, the cov-
erage rates for the model parameters were very close to the 
nominal 0.95 level for FIL, whereas for IL they were generally 
below the nominal level. Also conducted a Monte Carlo simula-
tion study to investigate the performance of the MICE_MNAR 
method with a dichotomous outcome variable [20]. As with 
[16], the independent variables in the simulation were generat-
ed from the standard normal distribution with coefficients of 1. 
MNAR missing data were generated using equations (7) and (8), 
with coefficients set to 1, -0.5, and 1 for equation (8). The de-
gree of MNAR data present was determined by the correlation 
between the error terms in the two equations, with p = 0,0.3  
or 0.6, representing MAR, light MNAR, and heavy MNAR data. 
A sample size of 500 was used for all simulation conditions in 
the study. In addition to simulating the data using the Heckman 
model, as described above, the authors also simulated data us-
ing a LR model in which the missing data indicator was the re-
sponse, and the original covariates, as well as the dependent 
variable of interest were predictors. In order to simulate MAR, 
light, and heavy MNAR data, the coefficient for y in this model 
was set to 0, 1, or 2. This latter set of simulations was designed 
to assess the performance of MICE_MNAR when the process 
underlying the missing data did not conform to the Heckman 
model underlying it. Across study conditions, 30% of the data 
were made to be missing. Results of this simulation demon-
strated that the relative bias for MICE_MNAR was typically less 
than 2.5% when the missing data mechanism for the response 
was MNAR. In contrast, the comparison method, Listwise Dele-

tion (LW), exhibited much higher rates of bias for MNAR data. In 
addition, the empirical standard errors for the MNAR data were 
lower than those for LW. The authors concluded that for MNAR 
data, MICE_MNAR outperformed LW, regardless of the way in 
which it was simulated. When data were MAR, MICE_MNAR 
had larger standard errors than LW, but its bias was lower. 

Study goals

The primary goal of this study was to further research into 
the performance of imputation methods for cases when data 
were MNAR in the context of logistic regression with a binary 
dependent variable. As described above, there exist multiple 
approaches for handling missing data in these cases, including 
those from the IL/FIL and selection model/Heckman paradigms. 
Prior research has outlined situations in which each method has 
performed well. However, this work has not directly compared 
these methods with one another using a Monte Carlo simula-
tion methodology. Thus, one of the primary goals of this study 
was to compare these two promising techniques with one an-
other using the same set of conditions. In addition, prior work 
examining both of these methods has focused primarily on their 
performance when the data are MNAR, though some work with 
MICE_MNAR and MAR data was done, as described above. 
In practice, researchers will not know the precise mechanism 
underlying missing values in their dataset. Therefore, it is im-
portant to thoroughly investigate how these methods perform 
when applied to datasets with an underlying MAR mechanism. 
A third goal of this study was to further prior research into the 
performance of these methods by including a wider array of 
simulation conditions than has been used previously, particu-
larly with respect to sample size, the percent of missing values, 
non-MNAR specific imputation techniques, and the strength of 
the MAR process when data were generated as MAR. Finally, 
prior research has demonstrated that using MICE imputation in 
the standard manner leads to parameter estimation bias when 
the data are MNAR [10]. Thus, it was anticipated that IL/FIL 
and MICE_MNAR would perform better than MICE in terms of 
parameter estimation accuracy, when the missing data mecha-
nism was MNAR.

Methods

In order to address the research goals outlined above, a 
Monte Carlo simulation study design was used. For every com-
bination of conditions, which are described below, 1000 replica-
tions were generated. All simulations were conducted using the 
R software package, version 4.0 [21]. The data were generated 
for a binary logistic regression model with three independent 
variables, each of which was drawn from the standard normal 
distribution. The dependent variable was generated from a LR 
model taking the form

* * * *
0 1 1 2 2 3 3( 1) log ( )ip y it X X Xβ β β β= = + − +  (10)

Where
*
0 1β =
*
1 1β =  
*
2 0.5β =  
*
3 0.75β =  

Values of ( 1)ip y =  that exceeded 0.5 were set to 1, and 
those of 0.5 or less were set to 0.
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Sample size

Data were generated with sample sizes of 50, 100, 200, 400, 
and 800. These values were selected to represent a range of 
sample sizes that would be viewed in practice, and which cover 
sample sizes used in prior research in this area [16,20,22].

Percent missing data

The conditions for the percent of missing data were 10%, 
20%, 30%, and 40%. As with the sample size conditions, these 
values were chosen to represent conditions that might be seen 
in practice, and because they cover a range of values used in 
prior missing data research [16,20,22-24].

Type of missing data

Data for the dependent variable were generated from either 
a MNAR or a MAR process. Prior research examining the per-
formance of the methods that are the focus of this study has 
emphasized their performance when the outcome variable of 
interest had missing data that were generated as MNAR. This 
focus is reasonable, given that they were designed for use in 
such cases. However, in practice, researchers will not actually 
know the underlying missing data mechanism when they select 
the methods to use for dealing with it. Therefore, it is important 
to know how these methods will perform when the underlying 
missing data mechanism is not MNAR, but the researcher as-
sumes that it is and applies one of the methods designed for 
that type of missingness. In order to provide some information 
about such cases, missing values for the response variable were 
generated separately for the MNAR and MAR cases. MAR miss-
ing data was generated using the ampute function in the R mice 
library [9]. In order to manipulate the strength of the relation-
ship between the measured variables and the missing values, 
the coefficients provided to ampute were manipulated to be ei-
ther 0.5 or 1.0, representing a relatively weaker versus stronger 
MAR missing data mechanism. As was the case for MAR, MNAR 
data were generated using the ampute function in R. In keeping 
with [20], light, and heavy MNAR data were simulated, in this 
case using ampute weight values for y of 1 or 2. This approach 
to simulating MNAR data was selected to ensure that the re-
sults of the simulation did not unrealistically favor MICE_MNAR 
were the data to have been generated using a selection model.

Missing covariate data

Prior work with the Heckman approach [20] has examined 
cases in which data are missing both for the response variable 
as well as the covariates. However, for the IL and FIL methods, 
more work needs to be done in this regard. In addition, not a 
great deal of prior work has examined how the strength of the 
MAR effect is associated with parameter estimation in the con-
text of missing covariate data. Therefore, the strength of the 
MAR missing data mechanism was manipulated through the 
weights applied in the missing data generation. The weights 
used in this study were 0.5 and 1.0, representing relatively 
weaker and stronger MAR data generation for the missing co-
variates. The percentages of missing data for the covariates 
matched those for the response variable, which were listed 
above.

Methods for handling missing data

The focus of this research was on comparing methods de-
signed to deal with MNAR data. Therefore, the IL, FIL, and 
MICE_MNAR approaches were included. The former two meth-
ods were carried out using the il and fil functions from the brlmr 

R library [16]. The logit link function was used, given that the 
dependent variable dichotomous in nature. Otherwise, default 
settings were applied. The Heckman model approach based on 
MICE was carried out using the miceMNAR R package [19]. The 
selection and output equations both included the set of pre-
dictor variables. In addition, LW and MICE were also used in 
this simulation study, to represent common and/or exemplar 
methods for dealing with missing data that is MAR or MCAR. 
For MICE and MICE_MNAR, a total of 50 imputed datasets were 
used.

Outcome variables

Several outcome variables were included in this study. The 
Absolute Relative Bias (ARB) for each coefficient was calculated 
as

ARB
β β
β
−

=    (11)

Where

β = Estimated parameter value

β = Data generating parameter value

In addition, the empirical standard error for each estimate 
was calculated as the standard deviation of β  across replica-
tions. Finally, for each estimate, the 95% confidence interval for 
each replication was obtained. The proportion of replications 
for which the data generating parameter value appeared in the 
95% confidence interval was the coverage rate for these inter-
vals, and served as an additional outcome variable for the sim-
ulation study. In order to ascertain which of the manipulated 
study factors, or their interactions, were associated with these 
outcomes, Analysis of Variance (ANOVA) was used for each. The 
dependent variables for these ANOVA models were ARB, empir-
ical standard error, and coverage rates, respectively. The inde-
pendent model terms were the main effects of the manipulated 
study factors outlined above, and their interactions. In addition 
to the statistical significance of each, the partial 2η  value was 
also calculated for each term. Both the hypothesis test results 
and effect sizes are reported below.

Results

MNAR data

The ANOVA results with respect to ARB indicated that the 
interaction of missing data method by MNAR level by percent 
missing by covariate missing status was significantly related 
to the parameter estimation bias (F12,188=3.19, p=0.0229, 2η
=0.17). Parameter estimation bias for the factors in this inter-
action term appear in (Table 1). Across conditions in (Table 1), 
coefficient estimates obtained using LW deletion yielded the 
greatest ARB, followed by those based on standard MICE im-
puted data. Among the imputation methods designed specifi-
cally for the MNAR case, FIL and MICE_MNAR were associated 
with the least biased estimates. When the covariates had miss-
ing data as well as the response variable, estimation bias for all 
of the methods was slightly higher. This result was particularly 
notable with standard MICE, with less of an increase in rela-
tive bias for MICE_MNAR, IL, or FIL. Finally, when the covariates 
did not have missing data, estimates using the MICE_MNAR im-
puted data were the least biased, whereas when the covariates 
also had missing data, FIL and MICE_MNAR were associated 
with comparable levels of relative bias, which was the lowest 
across methods.
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With regard to coverage rates, the ANOVA results identified 
the interactions of missing data method by covariate missing 
data status by sample size (F16,188=3.57, p=0.0058, 2η =0.19), and 
missing data method by percent of missing data (F12,188=20.97, 
p<0.0001, 2η =0.57) as statistically significant. The coverage 
rates by method, covariate missing data status, and sample 
size appear in (Table 2). Across methods, the coverage rates for 
the LW data were well below the nominal 0.95 rate. The other 
methods all exhibited very high coverage rates, uniformly 0.95 
or higher, except for a few instances involving MICE_MNAR. 
More specifically, the MICE_MNAR coverage rates were below 
0.95 when the covariates had missing data and the sample size 
was 400 or larger. In addition, FIL also had a coverage rate below 
0.95 when the covariates had missing data, and the sample size 
was 800. The coverage rates by missing data method by percent 
of missing data in the sample (Figure 1). These results reinforce 
the finding, discussed above, that estimates based on LW data 
were had coverage rates of approximately 0.85, well below the 
nominal 0.95 level. The coverage rates for the other methods 
were generally around the nominal rate, across percentages 
of missingness. ANOVA results for the standard error identi-
fied the interaction of missing data method and sample size as 
statistically significantly related to the value of the parameter 
estimate standard errors (F16,268=4.96, p<0.0001, 2η =0.23). For 
all of the missing data methods, the standard errors declined 
in value concomitantly with increases in sample size (Figure 2). 
With regard to methods, the standard errors were smallest for 
MICE_MNAR and FIL across sample sizes, and were largest for 
the LW data, followed by standard MICE. Finally, for N=800, the 
standard errors of the estimates were comparable for IL, MICE, 
and LW data.

MAR data

When the dependent variable were generated with a MAR 
process, ANOVA results identified the interaction of missing 
data method by the MAR weights was significantly related to 
the relative estimation bias (F4,268=54.88, p<0.0001, 2η =0.44). 
No other terms were found to be statistically significant. The 
relative estimation bias for the logistic regression by the miss-
ing data method and the MAR weights (Table 3). The relative 
bias results for LW were greater when the MAR weights were 
larger, whereas for the other methods, there was not a differ-
ence in bias across these weights. Additionally, LW had the high-
est relative bias values across conditions. The lowest estimation 
bias was associated with the IL missing data approach, with 
MICE_MNAR and MICE exhibiting similar levels of ARB, and FIL 
having slightly higher values. For the parameter coverage rates 
when the missing data were generated as MAR, the interaction 
between missing data method by MAR weights by percent of 
missing data was statistically significant (F12,268=7.43, p=0.0001, 

2η =0.22). LW consistently had the lowest coverage rates across 
conditions, with values below the nominal rate of 0.95 (Table 
4). In contrast, the coverage rates associated with MICE, IL, FIL, 
and MICE_MNAR were all at or above the 0.95 rate. The ANVOA 
results indicated that with respect to the standard errors for the 
MAR data case, the interaction between missing data method 
and sample size was statistically significant. These standard er-
rors appear in (Figure 3). For all missing data methods, the stan-
dard errors declined with increases in sample size. The lowest 
standard errors were consistently associated with the standard 
MICE missing data approach, with FIL and MICE_MNAR having 
comparable standard errors, and those of IL being just below 
those of LW.

Figure 1: Coverage rates by missing data method and percent 
missing: MNAR data.

Figure 2: Standard errors by missing data method and sample 
size: MNAR data.

Figure 3: Standard errors by missing data method and sample 
size: MAR data.
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Table 1: Relative estimation bias by missing data method, covariates missing status, MNAR level, and per-
cent missing: MNAR data.

Covariates not missing

MNAR level Missing Percent LW MICE IL FIL MICE_MNAR

Low 10% 0.66 0.04 0.05 0.02 0.0006

20% 0.73 0.06 0.05 0.03 0.002

30% 0.83 0.07 0.04 0.02 0.004

40% 0.94 0.11 0.07 0.03 0.01

High 10% 0.74 0.07 0.02 0.03 0.01

20% 0.88 0.09 0.04 0.03 0.01

30% 0.95 0.10 0.07 0.04 0.02

40% 1.06 0.13 0.07 0.05 0.03

Covariates missing

MNAR level Missing Percent LW MICE IL FIL MICE_MNAR

Low 10% 0.69 0.05 0.06 0.03 0.02

20% 0.85 0.11 0.07 0.02 0.02

30% 0.93 0.15 0.05 0.04 0.03

40% 1.09 0.25 0.08 0.04 0.05

High 10% 0.86 0.13 0.05 0.02 0.03

20% 1.03 0.16 0.05 0.03 0.03

30% 1.22 0.20 0.06 0.03 0.06

40% 1.34 0.32 0.08 0.06 0.05

Table 2: Coverage rates by missing data method, covariates missing value status and sample size: MNAR 
data.

Sample size LW MICE IL FIL MICE_MNAR

Covariates not missing 50 0.83 0.99 0.99 0.99 0.97

100 0.85 0.99 0.98 0.99 0.98

200 0.83 0.98 0.96 0.97 0.97

400 0.85 0.99 0.97 0.97 0.97

800 0.85 0.97 0.97 0.98 0.97

Covariates missing 50 0.84 0.96 0.95 0.95 0.96

100 0.85 0.96 0.97 0.95 0.95

200 0.85 0.98 0.96 0.95 0.95

400 0.84 0.97 0.95 0.95 0.93

800 0.83 0.97 0.95 0.93 0.92

Table 3: Relative estimation bias by missing data method, MAR weight: MAR data.

MAR weight LW MICE IL FIL MICE_MNAR

0.5 0.17 0.05 0.02 0.06 0.04

1.0 0.31 0.04 0.01 0.05 0.04
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Table 4: Coverage rates by missing data method, MAR weights, and percent missing: MAR data.

MAR weights Missing Percent LW MICE IL FIL MICE_MNAR

0.5 10% 0.84 0.96 0.98 0.98 0.96

20% 0.85 0.94 0.98 0.97 0.95

30% 0.85 0.95 0.97 0.96 0.94

40% 0.85 0.97 0.99 0.95 0.96

1.0 10% 0.83 0.98 0.98 0.98 0.95

20% 0.84 0.98 0.99 0.98 0.94

30% 0.84 0.99 0.98 0.98 0.96

40% 0.83 0.99 0.99 0.98 0.95

Discussion

The purpose of this study was to investigate and compare the 
performance of two methods designed specifically for use with 
MNAR data. The dependent variable of interest was dichoto-
mous, so that LR was the modeling strategy of interest, once 
the missing data issue was addressed. Prior research had dem-
onstrated the potential utility of both IL/FIL and MICE_MNAR 
when data were MNAR. The current study expanded on this 
earlier work by increasing the number of sample size conditions 
that were used, the percent of missing values, and by directly 
comparing the performance of these two methods with one an-
other. Results of the simulation suggest that when data were 
MNAR, data from MICE_MNAR yielded the least biased param-
eter estimates across conditions, with those from FIL being very 
close behind. These results showing that FIL based data yields 
less biased estimates than IL is in keeping with earlier work [16]. 
It is now clear that across larger sample size conditions than had 
been examined heretofore, this pattern remains. Second, pa-
rameter estimate coverage rates for the MNAR data condition 
were at or above the nominal 0.95 level for all of the methods 
studied here, suggesting that researchers making use of them 
can have some confidence in their ability to identify the general 
region in which the parameters lie. Third, when the data were 
actually MAR, the methods designed for MNAR data performed 
comparably to MICE, which is generally considered one of the 
best methods for use with missing data [8]. Thus, researchers 
can have some confidence in using either MICE_MNAR or IL/FIL 
when they are unsure of the underlying missing data mecha-
nism. Finally, although all methods performed relatively better 
(i.e., lower ARB, smaller standard errors) with larger sample siz-
es, FIL and MICE_MNAR consistently performed the best even 
for the largest samples.

Implications for practice

The results of this study present several implications for 
practice. First, when the dependent variable is dichotomous, 
thus calling for the use of LR, either FIL or MICE_MNAR appear 
to be good candidates for researchers to use when dealing with 
missing data. This conclusion appears to be true even when the 
underlying missing data mechanism is MAR. It does not appear 
that researchers need to be concerned that two approaches 
for dealing with MNAR data will not work in the MAR context. 
Second, FIL consistently performed as well as, or in some cases 
better than IL. Thus, although it was designed specifically for 
use with smaller samples, FIL appears to be a useful tool for 
relatively large sample cases as well. The use of standard MICE 
is not recommended when the outcome variable is thought 

to be MNAR. The results presented here demonstrate that in 
such cases, the estimates from a model such as LR will be rela-
tively biased. It is important to note, however, that the sensitiv-
ity analysis recommended for use with MICE and MNAR data 
[25] was not used in this study. Such an approach might prove 
useful, and would likely perform better than standard MICE did 
here. However, given the positive findings for both MICE_MNAR 
and FIL, it is not clear that this sensitivity approach is necessary. 
Finally, even for samples as small as 50, MICE_MNAR yielded 
data that resulted in relatively low levels of bias, particularly 
when compared against the other approaches (with the notable 
exception of FIL) studied here.

Limitations and directions for future research

As with any single study, this research has limitations that 
need to be acknowledged, and upon which future work can be 
built. First, the MNAR missing data were generated using one 
specific approach. This method was selected so as to avoid fa-
voring one method over another. However, it is also true that 
the selection model underlying the Heckman approach can also 
be used to generate missing values. Thus, future work should 
investigate how the methods studied here would perform were 
the missing data generated using this approach. Second, a wid-
er array of models for both the generation of the original da-
taset, as well as the missing data, should be investigated. Such 
models might include a mix of categorical and continuous inde-
pendent variables, as well as nonlinear terms involving the pre-
dictors. Furthermore, additional research should be conducted 
examining additional levels of MAR and MNAR. The values used 
here were selected in order to replicate earlier research, which 
was felt to be the best strategy given that additional sample 
size and percent missing conditions were already being used, 
and that two methods were being compared that had hither to 
not been examined together. However, given that this study has 
clarified the effects of sample size and percent missing, future 
work should expand on this work by investigating a wider array 
of strength of MAR/MNAR conditions. Future work could also 
include an MCAR condition as well.
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