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Abstract

Understanding the molecular anatomy, rationalizing the 
selection criteria, functionalization strategies of interrelat-
ing biopolymers with lipids are key to establish a hybrid 
combinatorial system owing to distinct properties and func-
tions serving a special purpose. In recent years, many stud-
ies have been reported on developing these hybrid systems 
that can offer great advantages such as enhanced solubility, 
adhesion, and mechanical properties, site-specific delivery, 
better stability, and bioavailability of payload with minimal 
side effects. The comprehensive spotlights the importance 
and types of functionalization techniques explored for 
these conjunctional systems for obtaining synergistic prop-
erties for bio-imaging and drug delivery applications. Along 
with recent trends, the scrutiny even addresses the future 
perspective of these hybrid systems impacting biomedical 
innovations in radiology and medical imaging.

Introduction

Biopolymers have earmarked their importance in the bio-
medical and pharmaceutical applications. Researchers are still 
working for the facilitation of better therapeutic effects and 
medical benefits. In this context, several strategies are on a 
play like functionalization of biopolymers with physicochemi-
cal modification, functionalization of biopolymers with lipids, 
functionalization of lipids with biopolymers, development of 
composites or hybrid systems for bringing together the ben-
efits of individual moieties/systems (e.g., a combination of 
polymers or combination of systems) and technical advance-

ments. Biopolymer-lipid systems provide a plethora of applica-
tions in the biomedical- bio imaging and pharmaceutical fields. 
Materials meant for biomedical/pharmaceutical applications 
like tissue engineering, wound healing, drug delivery, and gene 
delivery should possess certain properties like biocompatibility, 
biodegradation, low toxicity, low antigenicity, high bio-activity, 
processability, and appropriate mechanical strength. Based on 
a specific application the materials are supposed to have a spe-
cific property. For example, during tissue regeneration, the ma-
terial should support cell growth and proliferation [1-5].
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Figure 1: Biopolymer Lipid- Hybrid Conjugate exhibiting mul-
tiple sites for multidisciplinary applications.

Controlled drug delivery in cancer therapy

Lipid-polymer hybrid nanoparticles are efficiently used for 
delivering a single drug as well as a combination of drugs for 
a better therapy in diseases like cancer. As the entrapment ef-
ficiency and drug release patterns are more promising with the 
lipid-polymer hybrid nanoparticles, it has been a successfully 
reported carrier system with interesting in vitro (Cell Lines) and 
in vivo (animal model) studies. Hydrophilic drugs are incorpo-
rated in the aqueous polymeric core and hydrophobic drugs are 
loaded into the lipid or lipid-PEG shell. Either physical entrap-
ment or chemical covalent bonding is followed to modulate the 
encapsulation efficiency and drug release profile [6-9]. Chan et 
al. reported the effective prevention of arterial restenosis by us-
ing lipid-polymer hybrid nanoparticles loaded with paclitaxel for 
targeted drug delivery. This single drug delivery system was de-
veloped by the nanoprecipitation method using polylactic acid, 
tocopherol derivative, lecithin, and peptide as components. Shi 
et al have also reported the application of lipid-polymer hybrid 
nanoparticles of doxorubicin prepared by emulsification solvent 
evaporation method and shown positive results in the manage-
ment of cervical cancer [10-11].

Kong et al. have developed these hybrid nanoparticles by 
nanoprecipitation method for combinatorial therapy compris-
ing of camptothecin and iron oxide for the treatment of breast 
cancer. The materials include polylactide co- glycolide, lecithin, 
and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine–poly-
ethylene glycol. These nanoparticles are activated by a magnet-
ic field for stimuli-responsive drug release. There is a synergistic 
effect with the sequential release of the two loaded agents. Us-
ing the same polymer lipid materials, Aryal et al. also has re-
ported the positive results of combinatorial therapy with such 
hybrid nanoparticles loaded with Gemcitabine HCl and Pacli-
taxel following the nanoprecipitation method for the treatment 
of pancreatic cancer. [12-16]. Several reports are published by 
scientists proving the advantageous involvement of lipid-based 
polymeric nanoparticles in different types of cancer therapy 
showing prolonged drug delivery [17-21]. By altering the ra-
tios of lipid to polymer, optimized carriers were developed by 
several researchers that meet the desired goals of controlled 
drug delivery with minimum off-site effects. Cheow and Hadi-
noto worked on the factors influencing the size of the carrier 
and could develop hybrid nanoparticles of required nanometric 
size using high lipid to polymer ratio with standard production 
yield following the nanoprecipitation method [22-24]. On the 
another end, Liu et al. developed the multilamellar liposomal 
nanoparticles following the emulsification solvent evaporation 
method with excess lipids in the system having high lipid to 
polymer ratio. They used PLGA and 1,2-dilauroylphosphatidylo-
choline in the experiments. They also revealed the influence of 
lipid to polymer ration on percent entrapment efficiency. They 
developed hybrid nanoparticles of lipid-polymer with mono-
layer lipid shell showing the controlled release of paclitaxel 
[25-28]. Incorporation of two anticancer drugs into a single 
lipid-polymer hybrid nanoparticle system has been achieved 
successfully by covalent grafting of the drugs – doxorubicin and 
camptothecin with the polymer by Aryal et al. They synthesized 
the doxorubicin-poly lactic acid and camptothecin-poly lac-
tic acid conjugates at optimum molar ratio and encapsulated 
within a shell of egg-phosphotidylcholine-1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-polyethylene glycol following 
nanoprecipitation method [29]. These hybrid nanoparticles of 
lipid-polymer construction are well suited for the conjugation 
of both hydrophobic and hydrophilic drugs (paclitaxel and cis-

platin) for synergistic anticancer therapy. [30-35].

Hybrid applications in targeted bio-imaging and drug 
delivery

Lipid-polymer hybrid nanoparticles are also useful for active 
targeted drug delivery. This is achieved by the functionalization 
of the nanoparticles with different active targeting moieties like 
small folate molecules or transferrin or antibodies or aptamers 
or single-chain variable fragments or peptides or arginyl glycyl 
aspartic acid (RGD). Such targeted drug delivery reduces off-site 
toxicities and enhances the therapeutic efficiency of the drug 
at a lower dose. Certain receptors overexpressed at specific 
cancer cells can also be treated as ligands for targeted drug 
delivery [36-41]. Targeted drug delivery has a big advantage in 
reducing the toxicity towards healthy cells particularly in the 
case of cancer chemotherapy. Also, targeted drug delivery al-
lows enhanced exposure of diseased cells to the administered 
drug by which the dosing can be modulated to reduce unnec-
essary administration of excess doses [42-44]. For example, fo-
lic acid overexpression in a cancerous cell can be considered 
as a targeted drug delivery principle. Zheng et al. developed a 
targeted drug delivery system of lipid-polymer hybrid nanopar-
ticles for breast cancer treatment using an aromatase inhibitor 
following the nanoprecipitation method using poly lactide-
co-glycolide; phosphatidylcholine; 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine; D-a-tocopherol PEG 1000 succinate and 
transferrin ligands [45-48]. Liu et al. reported the docetaxel tar-
geting for breast and ovarian cancer cell lines. Here folic acid 
was used as a ligand for the targeted delivery. They followed 
the emulsification-solvent evaporation method for the prepa-
ration of hybrid nanoparticles using poly lactide-co-glycolide; 
1,2-dilauroyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine–polyethylene glycol. They 
have shown prolonged therapy with targeted drug delivery (Fig-
ure1).

Wu et al. developed reduction sensitive hybrid nanoparticles 
using folate as a ligand to deliver the anti-cancer drug, doxo-
rubicin using the materials – poly lactide-co-glycolide, soybean 
lecithin, monomethoxy-poly(ethylene glycol)-S-S-hexadecyl 
(mPEG-S-S-C16) monolayer, and 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine–polyethylene glycol-folate. These 
doxorubicin-loaded hybrid nanoparticles have shown enhanced 
uptake by the cancer cell lines and shown cytotoxicity in folate 
overexpressing human oral cavity squamous cancer cells, KB 
cells xenografted in mice. Folate targeted hybrid nanoparticles 
of paclitaxel were developed using thin-film hydration and ul-
trasound dispersion technique and evaluated using mammary 
carcinoma cells which have shown greater therapeutic efficacy 
than non-targeted nanoparticles [50-52]. Doxorubicin loaded 



MedDocs Publishers

3Journal of Radiology and Medical Imaging

hybrid nanoparticles further liganded with folate for active tar-
geted drug delivery has shown higher uptake of doxorubicin 
and increased cytotoxicity in MCF-7 cells compared to non-tar-
geted nanoparticles. These are fabricated by the emulsification 
solvent evaporation technique. Mitomycin C loaded soybean 
phosphatidyl choline-polylactic acid-DPPE/DSPE-PEG/DSPE-
PEG-folate hybrid nanoparticles have shown improved phar-
macokinetic profile with better in vitro and in vivo therapeutic 
efficiency. Dave et al. have prepared, statistically optimized, and 
evaluated norfloxacin loaded hybrid nanoparticles for targeted 
drug delivery using polylactic acid and soya lecithin. They fol-
lowed the emulsification-solvent evaporation method [53-58].

Composite applications in gene delivery

For several genetic disorders, cancers, chronic diseases, gene 
delivery is a promising treatment strategy. However, the deliv-
ery of genes is a challenging task due to their unique charac-
teristics. The use of biodegradable nanoparticles and cationic 
liposomes are attractive strategies for the effective delivery of 
genetic materials. Lipid-based polymeric non-viral carriers have 
several advantages like the absence of viral risk factors, less im-
munogenicity, less harm, low processing cost, and better suc-
cess rate. Hybrid nanoparticles have also addressed the prob-
lems like less stability, cytotoxicity, the larger particle size of 
cationic liposomes and polymeric nanoparticles. Because these 
lipid-polymer hybrid nanoparticles provide stability, longer cir-
culation times, and biodegradability [59-61]. The genetic level 
of cancer therapy has made revolutionized with the concept of 
siRNA delivery. This siRNA has sequence-specific interference 
causing post-transcriptional gene silencing in RNA. The admin-
istration of siRNA to cancer cells has been proved to prevent the 
expression of proteins involved in tumor generation and pro-
gression. Out of several vectors tried for its effectiveness in vivo 
delivery, the recently established lipid-based hybrid nanopar-
ticles have gained importance for the delivery of siRNA [62].

ONPATTRO (RNAi lipid-based therapeutic) introduced by 
Alnylam Pharmaceuticals Inc. has got US FDA approval for 
treatment of the polyneuropathy of hereditary transthyretin-
mediated amyloidosis in adults. Yang et al. reported that the 
cationic lipid-polymer hybrid nanoparticles fabricated following 
one step nanoprecipitation technique have been found as ef-
fective delivery carriers for siRNA which can effectively deliver 
siP1k1 (active targeting against P1k1 oncogene) to BT474 cell 
lines and BT474 xenograft murine model. The experiments have 
shown increased tumor inhibition than compared to non-tar-
geted nanoparticles. The researchers have developed differen-
tially charged hollow core/shell hybrid nanoparticles for effec-
tive delivery of siRNA and tested for reduced luciferase activity 
in luciferase-expressing xenograft tumors (Dual-Luc HeLa cells) 
using GL3 siRNA [63]. Shi et al. developed hybrid nanoparticles 
following a modified double emulsion solvent evaporation tech-
nique encapsulating siRNA along with DSPE-PEG, lecithin, poly 
lactide-co-glycolide, and a cationic lipid-like a molecule, G0-C14. 
Effective tumor inhibition through silencing of prohibitin 1 gene 
with the effective delivery of siPHB1 was reported in the A549 
xenograft BALB/C nude mice model [64]. Gao et al. developed 
cationic liposomal nanoparticles encapsulated with anionic 
cholesterol grafted siRNA for effective delivery of siEGFR which 
shown the highest inhibition of tumor growth making use of 
transferrin receptor-mediated active targeted delivery [65].

Hybrid applications in inflammation therapy

Lipid-polymer hybrid nanoparticles are used for the de-

livery of anti-TNFα siRNA and capsaicin for topical treatment 
of skin inflammation. Desai et al. have developed this combi-
natorial carrier system for the simultaneous release of siRNA 
against TNFα and capsaicin as an anti-inflammatory drug. Hy-
brid nanoparticles permitted deeper delivery of capsaicin into 
dermal tissue and a synergistic effect is shown by siRNA gene 
material on skin inflammation [66].

Biopolymer composite applications in diagnostic and imag-
ing agent delivery

Lipid-polymer hybrid nanoparticles are also useful in mag-
netic resonance imaging and computed tomography. These 
carriers are useful in the delivery of bioimaging agents like iron 
oxide, quantum dots, fluorescent dyes, and inorganic nanocrys-
tals. Valencia et al. have studied the formation of lipid-quan-
tum dot hybrid nanoparticles following a quick mixing method 
within the microfluid system. These quantum dots showed high 
stability by retaining their fluorescent properties in aqueous 
media. Gold nanocrystals and quantum dots were loaded into 
the hybrid nanoparticles through nanoprecipitation and studies 
their efficiency in mouse macrophage cells. The results showed 
promising CT imaging and visual imaging with the effective 
availability of gold nanocrystals and quantum dots respectively 
[67-69].

Applications in combinatorial therapies

Chemotherapy with radiotherapy:

Wang et al have also achieved a concurrent therapy of che-
motherapy and radiotherapy through small lipid-polymer hy-
brid nanoparticles loaded with docetaxel in the polymer core 
and radiotherapy agent, indium 111 or yttrium 90 in the lipid 
shell. The results showed enhanced cytotoxic effects in pros-
tate cancer cells rather than their counterpart treatment [70]. 
In addition to the combination of chemotherapy with radia-
tion, Werner et al. added the ligand-based targeted delivery for 
promising results. They used folate as an active targeting ligand 
for the hybrid nanoparticles synthesized following the nanopre-
cipitation method to load paclitaxel (an anticancer drug) and 
yttrium-90 (radiating agent). The system comprises of poly lac-
tide-co-glycolide core and a lipid outer shell made of soybean 
lecithin; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-
diethylene-triamine-penta acetate (DMPE–DTPA); 1,2-distear-
oyl-sn-glycero-3-phosphoethanolamine–polyethylene glycol 
(DSPE–PEG) and DSPE–PEG-folate. From their reports, it was 
evident that the folate targeted hybrid nanoparticles with dual 
chemotherapeutic and radiotherapeutic agents have shown 
better efficiency in the ovarian peritoneal metastasis model 
than compared with nontargeted and single drug therapies [71].

Chemotherapy with photothermal therapy

Zheng et al. successfully combined chemotherapy and pho-
tothermal therapy by synthesizing polylactide co-glycolide-lec-
ithin-PEG hybrid nanoparticles following step sonication meth-
od for the controlled delivery of doxorubicin and indocyanine 
green to the cancer cells environment. This therapeutic strategy 
has resulted in apoptotic cell death of doxorubicin sensitive as 
well as resistant MCF-7 or MCF-7/ADR tumor cells. This com-
bination therapy has also inhibited the recurrence of cancer 
under systemic settings. To overcome the individual limitations 
existing with chemotherapy of cisplatin and photothermal ther-
apy of indocyanine green, Gu et al. have fabricated a combina-
tion therapy merged with active targeting with the use of folate 
as the ligand. Such a hybrid system has shown promising results 
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in folate receptor overexpressing MCF-7 cells. These carriers 
are developed by following a step sonication method using poly 
lactide-co-glycolide, lecithin, DSPE–PEG2000, and DSPE–PEG2000-
FA [72].

Chemotherapy with immunotherapy

Park et al. have reported the combination delivery of TGF-β 
inhibitor and IL-2 using lipid-polymer hybrid nanoparticulate 
gels that showed enhanced cancer immunotherapy. This has 
combated the immunoinhibitory nature of the cancer environ-
ment. This therapy has enhanced the natural killer cell activity 
and CD8+ T-cell infiltration. The lipid shell used for this develop-
ment purpose is comprised of phosphatidylcholine-Cholesterol- 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine–polyethyl-
ene glycol along with the polymer poly lactide-co-glycolide [73].

Chemotherapy with genetic therapy

Chemotherapy alone sometimes suffers from resistance to 
the anticancer drug. Hence, a combinatorial therapy concept 
has emerged. In that line, cisplatin-resistant tumors are dealt 
with simultaneous delivery of siRNAs targeting the specific 
REV1, REV3L genes responsible for the transformation suscepti-
ble translesion DNA synthesis pathway. Such combination ther-
apy has given promising results with remarkable suppression of 
the said genes which synergistically inhibited the tumor growth 
in the prostate xenograft mouse model with human metastatic 
lymph node carcinoma comparing with cisplatin therapy alone. 
[74] In a similar line, Deng et al. have showcased their research 
with promising results. They developed layer-by-layer hybrid 
nanoparticles for systemic simultaneous delivery of doxoru-
bicin and siRNA for the treatment of potential triple-negative 
breast cancer in a xenograft model. Jiang et al. have devel-
oped nanodepot gel liposome-based simultaneous delivery of 
doxorubicin (encapsulated in the aqueous interior of liposome) 
and anticancer membrane-associated TNF-related apoptosis-
inducing protein-ligand (entrapped in the outer shell made of 
cross-linked hyaluronic acid). This system has shown promising 
substantial inhibition of tumor growth in MDA-MB-231 murine 
xenograft model. Several reports are published for the effective 
targeting of chemotherapeutic agent loaded hybrid nanoparti-
cles which are functionalized for active targeting with the lig-
and, arginylglycylaspartic acid (RGD). RGD modified lipid-poly-
mer nanoparticles of camptothecin, curcumin, isoliquiritigenin, 
and docetaxel have shown increased tumor inhibition and man-
agement in several types of cancers. In the management of car-
cinoembryonic antigen-presenting pancreatic cancer cells, hy-
brid nanoparticles are embedded with half-antibody (displaying 
anti-carcinoembryonic activity) were fabricated and evaluated 
using CEA-positive BxPC-3 pancreatic cancer cells. The results 
have shown increased cellular uptake and higher cytotoxicity 
effect compared with non-targeted nanoparticles. Other nota-
ble applications of lipid-polymer hybrid nanoparticles include 
the photoresponsive controlled release of doxorubicin, delivery 
of mRNA to lung tissues, delivery of insulin and MRI directed 
targeted delivery of doxorubicin [75-80].

Conclusion

In summary, multi-valent, multi-function polymer-based 
conjugates are great promise for both targeting the drug deliv-
ery and as potential bioimaging agents. The regular approach 
for the synthesis of lipid or polymer bioconjugates includes 
many different stages and can result into multiplex mixture and 
a big array of byproducts. The existence of most chemical and 

biological techniques used to assess the sample are many. As 
such, steps toward establishing the impact of these biopolymer 
bullets on the activity of the conjugate are limited. Recent job 
in controlled alterations in the distribution of ligand or ligand-
based conjugates includes shaping of specific multivalent struc-
tures has enabled better assessment of multi-valent nature in 
bioimaging.
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