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Abstract

Modern neurorehabilitation promises to revolutionize 
standard interventions for CNS impairments in domains 
traditionally dominated by physiotherapy. Functional neu-
roimaging models have greatly increased understanding of 
underlying mechanisms contributing to brain pathology, 
enabling improved diagnosis and targeted therapy. Building 
on diagnostic clarity, a spectrum of technological advances 
from machine learning and BCI intervention to non-invasive 
neurostimulation now assist functional recovery either di-
rectly, through modulation of innate circuit and molecular 
plasticity, or indirectly, through externally controlled motor 
support. 

Introduction

Among the most significant and actively investigated do-
mains into CNS impairments, neurorehabilitation promises 
to revolutionize standard approaches typically dominated by 
physiotherapies. Submission requests to PubMed as of October 
2019 [1] retrieve entries totaling in excess of 54,000, of which 
5000 have been generated per annum during the last five years, 
a four fold increase over some 1,200 per annum a decade ago, 
and fifty fold greater than the 100 articles per annum yielded at 
the field’s modern reincarnation in 1995. 

  Underlying factors are multiple but begin with the under-
standing that brain dysfunctions are widely variable and highly 
prevalent in the general population. Vascular disorders such as 
ischemic strokes or subdural hemotomas, degenerative diseas-
es like Parkinson’s (PD), Amyotrophic Lateral Sclerosis (ALS), or 
Multiple Sclerosis (MS), infections like meningitis and trauma, 
and structural and functional disorders all contribute to brain 
pathologies affecting motor performance [2,3]. Cumulatively, 
despite considerable variability in impairment type and inci-
dence, underlying mechanisms for many such dysfunctions are 
being elucidated. This knowledge has considerably increased di-

agnostic power. Structural and physiological diagnoses, chiefly 
by means of sophisticated mathematical models of neuroimag-
ing data [4-6], for instance, can identify different diseases on 
the basis of characteristic activity signatures. In turn, improved 
diagnosis grounds targeted intervention, that increasingly relies 
on machine learning methods to interpret semantic content 
and on neurostimulation protocols to modulate molecular and 
circuit based brain plasticity. Together these advances promise 
significant hope for millions of individuals.

Diagnostic models

Modern diagnostic protocols extrapolate from a growing 
evidence base showing that functionally related activity is dis-
tributed over broad neural landscapes, often globally [7]. For 
CNS impairments, experimental paradigms therefore seek to 
monitor intrinsic activity relations between widely separated 
regions, or attempt to detect differences arising from globally 
induced activity, usually in response to task based paradigms. 
Such paradigms vary from simple demonstrations of task-corre-
lated activity to complex dependency relations, where activity 
in one zone is ‘causally’ linked to activity in one or multiple oth-
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er brain regions. The frequently used general linear model as-
sumes, for example, that the observed activity changes are mul-
tifactorial and related to multiple independent variables, where 
recorded pixel values from imaging data are equated with linear 
combinations of explanatory variables [8-10]. Numerous such 
paradigms have been developed. Among the best known and 
most frequently used are the Psycho Physiological Interaction 
(PPI), Dynamic Causal Model (DCM), Granger Causal Model, 
and Multivoxel Pattern analyses, which offer distinct advantag-
es depending on research and diagnostic objectives. The DCM, 
for example, estimates effective connectivity and the influence 
on connectivity of tasking variables. Its approach involves the 
building of a reasonably realistic model of interacting brain re-
gions and then assessing how this model would be transformed 
by influencing variables under task based circumstances. In the 
Grainger causal model, by contrast, estimates of causal origin 
assume that such influences exhibit temporal precedence. Data 
analyses therefore search for time-shifted versions of activity 
patterning between different brain regions. Together these ap-
proaches provide considerably improved insight into neuro-
physiological correlates of CNS impairments.

Therapeutic options for assisted functional recovery

  The improvements in diagnostic capability and the signifi-
cant need for intervention have been the stimulus for develop-
ment of the current spectrum of therapeutic approaches [11]. 
Often incorporating various neurotechnologies they directly tar-
get the CNS itself, modulating circuit based connections at the 
level of higher order, cognitive functions. In consequence, there 
is a growing consensus that functional recovery is in many cases 
achievable, either indirectly, through technically enhanced, as-
sisted replacement of motor abilities, or directly, by neural res-
toration.

 Of these two routes to recovery, restoration of nerve tis-
sue remains the gold standard. Nonetheless, in many cases this 
option is precluded by the permanence of cortical nerve tis-
sue damage. Because of the inability of most CNS neurons to 
divide and replicate due to their normally arrested cell cycles, 
functional brain tissue is generally incapable of replacing lost 
neurons in damaged areas. Bypassing damaged tissue thus of-
ten remains the sole option for functional recovery, one made 
increasingly tractable through advances in understanding the 
computational language of the brain [12].

 The brain’s language is currently thought to be composed 
from cyclical activity that is generated by groups of neurons 
through feedback and feedforward neural circuits yielding tem-
porally independent and patterned features [13]. These fea-
tures are largely non-linear and dynamical and emerge from 
the high-dimensional state space that characterizes the global 
activity of the brain. Accordingly, they have the potential for 
generating an indefinite number of syntactical elements that 
can be combined and recombined to construct arrays yielding 
various neural codes. Simple features, like fixed point attractors 
[14], for example, are mathematically described by linear rela-
tions between the rate of change of the attractor’s return to its 
original configuration and the brain state, typically represented 
by a signal feature related to that state. More complex models, 
which can be mathematically described by multiple parameters 
[15], make the language exceptionally complex. 

  It is with the intention of interpreting the semantic content 
of brain activity from such neural codes, as opposed to mak-
ing functional inferences about brain state activity, that qualita-

tively new approaches for elucidating what brain states actually 
mean have been undertaken [16]. These new approaches at-
tempt to reveal semantic content by correlating brain activity 
with objective features of the world. Although this is not quite 
the same as representational imagery of the sort needed for di-
rectly communicating with the brain, it does signify an advance 
over existing imaging techniques in exposing the structure of 
the information content that the brain may actually be using. 
This has direct relevance for assessing communication errors 
that may underlie cognitive impairments. The monitoring of 
low frequency brain oscillations, for example, has recently been 
used to track motor recovery following stroke. [17]

  In the ‘decoding’ approaches evolved to date the central 
technical concern is that of ‘classification’, that is, mapping a 
brain state imaged in its activity pattern with an external fea-
ture, object, or event. The approach having the longest history, 
mass univariate analysis, is based on a general linear model in 
which sequential brain regions are monitored for specific men-
tal activity at a specific brain location [18]. While it is not known 
how the brain represents mental content, it is presumed that it 
is distributed over populations of cells [19]. Hence, there is the 
presupposition of an underlying connectivity architecture unit-
ing them. Classification technology is used to measure the cova-
riance between multiple single units, which serves as a diagnos-
tic feature that is relevant to how select images are encoded. In 
fMRI imaging, for example, the presentation of a single object 
will activate long regions of the occipital cortex originating at 
multiple sites; thus, monitoring covariance is thought to relate 
neural activity patterns to a structured representational content 
[20].

BCI contacts

 Notwithstanding the significance of interpretive paradigms, 
coupling to external devices that can translate the meaning of 
commands is essential for implementing assistive technology. 
Current methods for transferring this information rely on brain 
computer interfacing (BCI), which has evolved considerably 
since Jacque Vidal first coined the term in the 1970s [21]. Re-
cent methods have been used for rehabilitation of stroke vic-
tims, improved learning with artificial sensory feedback, and 
real-time control over fine motor movements among others.

  For neurorehabilitation of cognitive and CNS impairments, 
BCI is a theoretical outgrowth of several generations of en-
dogenous devices that have as a prime strategy the direct re-
placement of lost neural function. Among the many devices 
developed for replacement of nerve function outside the brain, 
include devices like pacemakers, cochlear implants, and vagal 
stimulators, for instance, which have all been successfully de-
ployed in the relatively simpler anatomical substrate of sen-
sorial and motor nerves [22]. Cochlear implants, for instance, 
transduce pitch vibrations that occur outside the ear to coded 
electrical signals within the cochlea in order to elicit action po-
tentials in the frequency to place receptors that form the audi-
tory nerve. 

 Among non-invasive BCIs sensory evoked potentials offer 
the most direct channel mediating between the brain’ com-
putational language and the devices intended to carry out the 
brain’s commands. Of these the steady state visual evoked po-
tential (SSVEP) is generally recognized as the most easily ob-
served and accurate representation of brain based information 
[23]. The SSVEP is an EEG recorded signal phase locked to the 
subject’s attended visual stimulation. Accordingly, the accu-
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racy of BCI signaling requires carefully constructed algorithms 
for segregating stimulus dependent responses. Increasingly, 
these capabilities emerge from sophisticated machine learn-
ing, artificial intelligence technologies. Whole brain analysis for 
high dimensional data employs machine learning approaches 
to discover multivariate relationships in data acquired from 
neuroimaging analyses [24]. Machine learning has been used, 
for example, to differentiate among population groups and to 
predict behavioral outcome. More recently, it has been used to 
identify neural correlates that can be targeted for stage specific 
BCI intervention [25].

Neurorehabilitation and brain tissue restoration 

 Beyond the extraordinary growth in sophistication and 
range of capabilities for assisted recovery, a select group of neu-
rorehabilitation procedures has been used to also successfully 
restore normally executed nerve and motor function. Implicitly 
or explicitly a primary goal of this research attempts to access 
the brain’s innate plasticity. Methodologies therefore attempt 
to evoke plastic changes either directly by non-invasive neuro-
stimulation, or indirectly through patient directed reconfigura-
tion of functional channels, known as neurofeedback. In either 
case an important presupposition is the distributed nature of 
functional activity. Such effective connectivity often extends be-
yond the point of lesion, where it can be molded to regenerate 
lost functional associations.

  In the case of neurofeedback approaches, fMRI imagery is 
often used to monitor brain activity during therapeutic or train-
ing paradigms [26], to assess the effectiveness of self-guided 
modulation. For motor tasks this requires the identification of 
functionally relevant activity distributed over several brain do-
mains, including motor cortex, premotor cortex, supplementary 
motor area, parietal cortex, basal ganglia, and cerebellum. For a 
patient suffering from ischemic stroke of the middle cerebral ar-
tery, for example, identification of functionally overlapping re-
gions allows the patient the prospect of viewing self enhanced 
activity in a region of interest and then monitoring the restora-
tion of function in these regions over time. Current evidence 
suggests that using even a single target region involved in motor 
imagery can lead to changes in cortical and subcortical network 
connectivity 

 Neurostimulation methods like transcranial direct current 
stimulation (TDCS), on the other hand, propose to modify 
brain plasticity by directly stimulating nerve tissue [27]. Such 
approaches allow top down modification of cortical areas to 
restore motor abilities through neuroplastic changes. Coupled 
with sophisticated imaging procedures, the progress of restora-
tion is related to the appearance of neural correlates that re-
late progress to a succession of activity events. A burgeoning 
medical establishment is now devoted to non-invasive stimula-
tion strategies, which have been successfully used for pain. On 
the other hand, optimization of parameters for motor recovery 
remains selective and overall standardizations not yet unach-
ieved. 

Conclusion

Although numerous mechanisms can impair CNS function 
related to motor performance, therapeutic methods offer in-
creasingly tractable solutions for repairing damaged brain tissue 
and restoring motor function. As a result, neurorehabilitation is 
no longer viewed as a domain of physical therapy alone, but a 
promising avenue for directly treating or bypassing underlying 

brain tissue damage. Improvements in the understanding of the 
brain’s language, the ability to directly induce function through 
plastic change, and sophisticated data gathering and informa-
tion processing abilities that can decode and transmit the brains 
signals into motor execution, offer today’s patients realistic re-
covery options not available two or even a decade ago.
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